Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
The Islamic Bank of Al-Nahrain offers a formula for financing the purchase of real estate through a deferred sale contract, through Murabaha to the order to buy, and the payment of the price is in the form of instalments that include (the purchase price of the profit and the mutual agreement on the real estate). This research aims to show the reflection of real estate murabaha on the bank's investments, by measuring the effect of real estate murabaha on the profits achieved by the Islamic Bank of Al-Nahrain Bank. The growth of 'real estate murabaha' realized from the 'amounts granted by Bank X, in addition to analyzing the financial ratios of profitability indicators, including (return on deposits Y2) and for the years (2016 - 20
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThis study was conducted in the botanical garden, Department of biology, College of Science/ Mustansiriyah University in from (15 February to 15 March, 2019) under the natural environmental conditions in the greenhouse in order to evaluate the effectiveness of parsley aqueous extract as a promoter for rooting. The study included the use of aqueous extract of a plant Parsley (Petroselinum crispum) extract was used in concentrations (1.25, 2.5 g / l), compare with IBA in concentration (100 mg / L) with dipping time 24 hour for all treatments. The cutting stems were included Rosmarinus officinalis, Nerium oleander, Olea europaea, Plumeria alba, Hibiscus rosa, Pelargonium graveolens, and Myrtus communis. The following measurements were
... Show MoreThe complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show MoreIn the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show MoreAquatic Oligochaeta is an important group of Macroinvertebrates that has been very remarkable as bioindicators for assessing water pollution and determining its degree in water bodies. Hence, the idea of the current study aims at studying the impact of Baghdad effluents on the Tigris River by using oligochaetes community as bioindicators . For this purpose, four sites along the inside of Baghdad has been chosen. Site S1 has been located upstream, site S2 and S3 has been at midstream and site S4 at the downstream of the River.This investigation has used different types of biological indicators, including the percentage of oligochaeta within benthic invertebrates, which ranged from 49.2-51.28%. The highest percentage of the tubificid w
... Show More