Moisture-induced damage is a serious problem that severely impairs asphaltic pavement and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-additives, specifically nano-silica oxide (NS) and nano-titanium dioxide (NT), at rates ranging from 0% to 6% by weight of the asphalt binder. To quantify the moisture damage resistance of the asphalt concrete mixes, two types of laboratory tests were employed: the tensile strength ratio (TSR) and the index of retained strength (IRS). The former characterizes moisture damage using tensile strength, whereas the latter uses compression strength. The physical properties of the asphalt binder, such as its penetration, softening point, and ductility, were also evaluated to identify the effects of the nanomaterials. The results indicated that variations in the mix design variables significantly affected the moisture damage resistance of the asphalt concrete mixtures. The maximum improvement values were obtained at the optimum asphalt content (OAC) and PNo. 4 (mid-range + 6%) with TSR values of 80.45 and 82.46 and IRS values of 74.39 and 77.14, respectively. Modifying asphalt concrete mixtures with 1.5% HL resulted in improved moisture resistance compared with mixtures without HL (0% HL) at each PNo. 4 level, reaching superior performance at PNo. 4 (mid-range + 6%) by 4.58% and 3.96% in the TSR and IRS tests, respectively. Additionally, both NS and NT enhanced the physical properties of the asphalt binder, leading to substantial enhancements in asphalt concrete mixture performance against moisture damage. A 6% dosage of NS and NT showed the best performance, with NS performing slightly better than NT. TSR was increased by 14.72 and 11.55 and IRS by 15.60 and 12.75, respectively, with 6% NS and NT compared with mixtures without nanomaterials (0% NM).
The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam
... Show MoreThe permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be
This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi
... Show MoreChromene is considered a fused pyran ring with a benzene ring, which is found in many plants and is part of many important compounds such as anthocyanidins, anthocyanins, catechins, and flavanones. These compounds are included under the headings "flavonoids" and "isoflavonoids." These compounds are well known as bioactive molecules with wide medicinal uses. According to these pharmacokinetic characteristics, many researchers are giving more attention to this type of compound and its derivatives. Many chromene derivatives have been synthesized to study their biological effects for the treatment of many diseases. Furthermore, the researcher displayed wide interest in finding new methods for synthesizing chromene derivatives. These met
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show More