This research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Strontium di-phosphate and Calcium di-phosphate. The XRD pattern of these composites without Ag2O revealed specific planes that corresponded to both types of di-phosphate. However, when Ag2O was added, a new cubic phase was detected, and the intensity of the calcium and strontium diphosphate increased with higher Ag2O content. The XRD pattern of the composites with Ag2O displayed specific planes that corresponded to Ag2O. In other words, the absence of Ag2O in the composite material led to larger particle sizes and less distinct boundaries between grains. In addition, it has been found that, as the concentration of Ag2O increased from 0 to 0.25, 0.5, and 0.75 wt%, the average crystallite size decreased from 36.2 to 31.7, 31.0, and 32.8 nm, respectively. These results suggest that the addition of Ag2O can effectively reduce the average crystallite size of the composite materials. Also, as the concentration of Ag2O increased from 0 g to 0.5 wt% within the composite material, the average lattice strain increased from 3.41·10-3 to 4.40·10-3. In simpler terms, adding Ag2O to the composite material resulted in a slight increase in the average lattice strain.
The aim of this paper is to demonstrate the effect of Na2[Fe(CN)5.NO].2H2O impurity (0.1 M) concentration on the dielectrical properties of poly (P-Aminobenzaldehyde) terminated by pheneylenediamine in the frequency and temperature ranges (1-100)KHz and (283-348) K respectively.These properties include dissipation factor, series and parallel resistance, series and parallel capacitance, real and imaginary part of the dielectric constant, a.c conductivity and impedance (real and imaginary) part, that have been deduced from equivalent circuit. The investigation shows that adding Na2[Fe(CN)5.NO].2H2O as additive to the polymer lead to increase of the dielectric constant with increasing temperature and it is decreasing with increasing the freq
... Show MoreThirteen isolates were collected from various clinical sources during the periodfrom 22/10/2017 to 22/12/2017. All the isolates were diagnosed based on the microscopic and biochemical propertiesby Vitek-2 Compact system. All isolates formed biofilm 100%, with 30% of isolatesbiofilm produced strongly and 70% on medium. The results of the present study have shown the presence of Curli fimbriae genes in E. cloacae bacteria from cases of urinary tract infections, infected patient with blood bacteremia and inflammation of wounds. Curli fimbriae is considered to be an important factor in the virulence of E.cloacae bacteria, which plays an important role in adhering and combining cells on solid surfaces to form the biofilmand helps in the adhesion
... Show More. The concepts of structural flexibility became one of the important goals in the design phases to reach high performance in architecture. The pioneering projects and ideas that linked architecture with technologies and scientific innovations appeared, with the aim of reaching projects that mix the concepts of flexibility with the development of machine thought and modern technology to meet the functional, environmental, and aesthetic requirements for human wellbeing. The aim of this paper is to identify the mechanisms used in order to reach flexible structural systems capable of accommodating technological changes and developments. The research hypothesizes that the structural design according to the concepts of flexibility achieves high s
... Show MoreThis paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher poros
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
Nano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreA competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreIn this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zin
... Show More