In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve network congestion problems. Since AI technologies are able to extract relevant features from data and deal with huge amounts of data, the integration of communication networks with AI to solve the congestion problem appears promising, and the research requires exploration. This paper provides a review of how AI technologies can be used to solve the congestion problem in 4G and 5G networks. We examined previous studies addressing the problem of congestion in networks, such as congestion prediction, congestion control, congestion avoidance, and TCP development for congestion control. Finally, we discuss the future vision of using AI technologies in 4G and 5G networks to solve congestion problems and identify research issues that need further study.
Low oil extraction and early high water production are caused in part by reservoir heterogeneity. Huge quantities of water production are prevalent issues that happen in older reservoirs. Polyacrylamide polymer gel systems have been frequently employed as plugging agents in heterogeneous reservoirs to regulate water output and increase sweep efficiency. Polyacrylamide polymer gel systems are classified into three classes depending on their composition and application conditions, which are in-situ monomer gel, in-situ polymer gel, and preformed particle gel (PPG).
This paper gives a comprehensive review of PPG’s status, preparation, and mechanisms. Many sorts of PPGs are categorized, for example, millimeter-sized preformed p
... Show MoreThis study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreThis work analyzes the effectiveness of an artificial intelligence (AI) community- building workshop designed for high school teachers and it focuses on contemporary issues related to AI concepts and applications. A group of high school teachers from local education districts attended a one-day AI hands-on workshop at our university. The workshop included several AI-related topics and hands-on examples and exercises aiming to introduce AI concepts and tools relevant to pre-college education. The participating teachers were expected to become a part of a collaborative network created to design, develop, and implement novel AI learning modules for high school students. Initial and a post-training surveys have been used to measure the
... Show MoreWith the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual an
... Show MoreWith the spread of globalization, the need for translators and scholars has grown, as translation is the only process that helps bridge linguistic gaps. Following the emergence of artificial intelligence (AI), a strong competitor has arisen to the translators, sweeping through all scientific and professional fields, including translation sector, with a set of tools that aid in the translation process. The current study aims to investigate the capability of AI tools in translating texts rich in cultural variety from one language to another, specifically focusing on English-Arabic translations, through qualitative analysis to uncover cultural elements in the target language and determine the ability of AI tools to preserve, lose, or alter the
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreThe research topic was chosen as a result of the importance of human resource in business organizations in general and the industrial process in particular. Without the human resource, business organizations cannot continue and achieve success and excellence, and the research problem has been diagnosed in the lack of sales of General Cement Company’s northern products, despite their distinctiveness, standing, and reputation in The market and its products with standard specifications, and through this problem, the following questions were raised: &nbs
... Show More