In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve network congestion problems. Since AI technologies are able to extract relevant features from data and deal with huge amounts of data, the integration of communication networks with AI to solve the congestion problem appears promising, and the research requires exploration. This paper provides a review of how AI technologies can be used to solve the congestion problem in 4G and 5G networks. We examined previous studies addressing the problem of congestion in networks, such as congestion prediction, congestion control, congestion avoidance, and TCP development for congestion control. Finally, we discuss the future vision of using AI technologies in 4G and 5G networks to solve congestion problems and identify research issues that need further study.
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreIt is shown that pure and 3% boron doped a-Si0.1Ge0.9:H and a-Si0.1Ge0.9:N thin films
could be prepared by flash evaporation processes. The hydrogenation and nitrogenation
are very successful in situ after depositing the films. The FT-IR analysis gave all the
known absorbing bonds of hydrogen and nitrogen with Si and Ge.
Our data showed a considerable effect of annealing temperature on the structural and
optical properties of the prepared films. The optical energy gap (Eopt.) of a-Si0.1Ge0.9
samples showed to have significant increase with annealing temperature (Ta) also the
refractive index and the real part of dielectric constant increases with Ta, however the
extinction coefficient and imaginary part of dielect
The speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pi
... Show MoreBackground: Langerhans' cell histiocytosis (LCH) is a group of conditions affecting the reticuloendothelial system. It includes Letterer-Siwe disease, Hand-Schuller-Christian disease and eosinophilic granuloma and most often presents in childhood. Materials and methods: Twenty-five cases of LCH were diagnosed histologically and confirmed by CD1a antibody and assessed immunohistochemically using anti-RANKL and anti-RANK antibodies to evaluate osteoclastogenic mechanism. Results: Regarding jaw cases, there was a significant correlation between CD1a and RANK (P=0.016). While in the skull, highly significant correlation existed between RANK and RANKL (p=0.001). Among the sites, there was no statistically significant difference found for each
... Show MoreZubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump
... Show More