Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.
Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned
... Show MoreA seasonal study of periphytic algae attached to the surface of river boats was conducted in Tigris river in Al Aadhamiya site for the period from October 2016 to May 2017. A total of 107 taxa of periphytic algae were identified belonging to the four classes of algae. The periphytic algae community dominated by Bacillariophyceae was (60.7%) followed by Chlorophyceae (20.5%) and Cyanophyceae (17.7%) Chrysophyceae was constituted (0.9%) of the total number. During the whole period of study filamentous taxa such as Oscillatoria amphibian, Phormidium spp., Spirulinagigantean, Cladophoreglomerata and Melosira roeseana remained the dominant colonizer which may be reflect the ability of this species to grow multiplies under different environmental
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The present research was performed to study the qualitative and quantitative composition of epiphytic algae on the aquatic host plant Ceratophyllum demersum L. Four sites in Tigris River, at Wassit Governorate were covered, during the seasons of Autumn 2017, winter 2018, Spring 2018, and Summer 2018. The study also included measuring the physiochemical parameters (temperature of air and water, pH , water level, EC, salinity, TDS, TSS, dissolved oxygen, BOD5, alkalinity, total hardness, calcium, magnesium, total nitrogen, total phosphourus). The total number of species of epiphytic algae was145 species, 98 species belonging to Bacillariophyceae, followed by 27species of class Cyanophyceae, 19 species of class Chloroph
... Show MoreGroundwater is an essential source because of its high quality and continuous availability characterize this water resource. Therefore, the study of groundwater has required more attention. The present study aims to assess and manage groundwater quality's suitability for various purposes through the Geographical Information System GIS and the Water Quality Index WQI. The study area is located in the city of Baghdad in central Iraq, with an approximate area of 900 , data were collected from the relevant official departments representing the locations of 97 wells of groundwater in the study area for the year 2019, as it included physicochemical parameters such as pH, EC, TDS, Na, K, Mg, Ca, Cl, , and &nbs
... Show MoreSpecialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show More
Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To
... Show More
