Preferred Language
Articles
/
WRaJGIcBVTCNdQwCbjYP
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-2018. Results showed that the water quality of the Tigris River water is within the world health organization (WHO) specifications for drinking water except for Sulfate concentration. An artificial neural network (ANN) was used to develop the model for the three locations to predict SAR. The sum of the squared error function and the coefficient of determination (R2) were used to evaluate the amount of error in predicting values of SAR and performance evaluation of the model. The results showed that the highest value of the coefficient of determination was 0.992, 0.986, and 0.955 for Samarra, Baghdad, and Kut, respectively and the ANN analysis indicated that the prediction of SAR was effected by Sodium for three stations. Thus, the ANN model has been found to provide SAR prediction tool that can be used effectively to describe the suitability of river water quality for irrigation purposes.

Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network
...Show More Authors

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Current and Modified Flood Discharge Capacity of a Reach of Tigris River between Kut and Amarah Barrages
...Show More Authors

This study was conducted to examine the discharge capacity of the reach of the Tigris River between Kut and Amarah Barrages of 250km in length. The examination includes simulation the current capacity of the reach by using HEC-RAS model. 247cross sections surveyed in 2012 were used in the simulation. The model was calibrated using observed discharges of 533, 800, 1025 and 3000m3/s discharged at Kut Barrage during 2013, 1995, 1995 and 1988, respectively, and its related water level at three gauge stations located along the reach. The result of calibration process indicated that the lowest Root Mean Square Error of 0.095 can be obtained when using Manning’s n coefficient of 0.026, 0.03 for th

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Intelligent Systems And Applications In Engineering
Artificial Intelligence Based Statistical Process Control for Monitoring and Quality Control of Water Resources: A Complete Digital Solution
...Show More Authors

Scopus (5)
Scopus
Publication Date
Sun Jul 23 2023
Journal Name
Water
Evaluation of Water Quality Index (WQI) in and around Dhaka City Using Groundwater Quality Parameters
...Show More Authors

Groundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD

... Show More
View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Mechanisms of Plant-Correlation Phytoremediation of Al-Daura Iraqi Refinery Wastewater Using Wetland Plant from Tigris River
...Show More Authors

In developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jun 15 2024
Journal Name
Journal Of Water And Health
Anthropocentric perspective on climate variability: the destination of antibiotics in the Tigris river is not restricted
...Show More Authors
ABSTRACT<p></p><p>This study aimed to detect antibiotics in water, particulate, plant, and sediment in the Tigris River within Baghdad City, in addition to their spatiotemporal variations, and related physicochemical parameters. Five sites were selected in the river. Three target antibiotics (tetracycline, gentamycin, and ciprofloxacin) were detected in water, particulate, plant, and sediment of the river at all selected sites. The results clearly showed that the concentrations of target antibiotics were sediment &gt; water &gt; plant &gt; particulate. Site 3 is considered as a risk site where high concentrations of all antibiotics during the wet and dry seasons wer</p> ... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology &amp; Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (35)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
A Novel Water Quality Index for Iraqi Surface Water
...Show More Authors

The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks
...Show More Authors

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be

... Show More
View Publication Preview PDF
Crossref