This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using water-to-cement ratio of 0.37, 400.5 kg cement with 10% replacement of SF (Silica Fume), 607 kg sand, 1147 kg gravel and 0.85 lit /100 kg of cement of SP (Supper Plasticizer). Five ages were adopted to measure the compressive strength these are (7, 14, 28, 60, 90 and 120) days. The results indicated that the strength of concrete at different ages was affected by the adopted water source especially on the period (28-90) days. There was a reduction on the compressive strength varies between ( - 3 5.8) % and (3-1.5) % for both river and well water source which is belong to the effect of chlorides.
This article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age conc
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MorePorous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreGlass Fiber Reinforced Polymer (GFRP) bars have gained popularity as a corrosion-resistant alternative to traditional steel reinforcement in Reinforced Concrete (RC) elements. This study investigates the flexural behavior of PRC panels reinforced with GFRP bars. The study variables included the GFRP reinforcement ratio and the number of embedded steel section distributions. Six concrete panels were fabricated, each measuring 2500 mm in length, with a rectangular cross-section of 750 mm in width and 150 mm in thickness. All panels were reinforced with GFRP bars and divided into two groups based on the reinforcement ratios of 0.532% and 0.266%. For each group, one panel served as the control specimen, while the remaining two were inte
... Show MoreReinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)
... Show MoreWarm asphalt mixture (WMA) and reclaimed asphalt pavement (RAP) are the most memorable sustainable materials in world of asphalt concrete pavements . This research aims to study the warm asphalt mixture for different types of filler materials such as ordinary cement and limestone dust. Beside, this research focused on the test of emulsified asphalt properties by evaluating the performance of warm asphalt mixture by Marshall Stability properties as well as moisture sensitivity. The results of this experiment provided many important points. First, The cationic emulsified asphalt is suitable with RAP aggregate for production warm asphalt mixtures .Second, The effective mixing procedure for warm asphalt mixtures consists hea
... Show MoreThe study aims mainly to evaluate the performance of Sharq Dijila water treatment plant in removing turbidity for the period of 1-4-2001 to 31-3-2004. Daily data for turbidity of raw, clarified, filtered, and supplied water were analyzed. The results of the study showed that there is a wide variation in turbidity levels of raw water fluctuating between 10-1000 NTU with mean value of 41.3 NTU. Turbidity values of the clarified water varied between 1.4-77 NTU. Based on the turbidity value of 10 NTU and 20 NTU (the design maximum turbidity) the readings gave an acceptable percentage of 32.4% and 86% respectively. The turbidity of filtered water ranged between 0.2-4.5 NTU which are completely in compliance with Iraqi and WHO standards. In ac
... Show MoreThis work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show More
Faces of the individual in his life many stressful events, which includes expertise undesirable, and events may involve a lot of sources of tension and the risk factors and threats in all areas of life, and this would make the stressful events play a role in the genesis of many diseases physical.
The high blood pressure is one of the most Actual manifestations of mental stress in the present scale physical disorders which may frequently in men relative to women, which may be caused by spasms in the blood vessels.
n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.