A long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a control beam (solid); the diminishing ratio of maximum strength capacity varied from 4.22 % to 13.5 %.
Polymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.
This Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te
Linear and mass attenuation coefficient of reactive powder concrete (RPC) sample ( of compressive strength equal to 70 Mpa) using beta particles and gamma ray with different energies have been calculated as a function of the absorber thickness and energy. The attenuation coefficient were obtained using NaI(Tl) energy selective scintillation counter with 90Sr/90Y beta source having an energy rang from (0.546-2.274) MeV and gamma ray energies (0.569, 0.662, 1.063, 1.17 and 1.33) MeV . The attenuation coefficient usually depends upon the energy of radiations and nature of the material. The result represented in graphical forms. Exponential decay was observed. It is found that the capability of reactive powder concrete to absorber beta particle
... Show MoreOne of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7,
Self-compacting concrete (SCC) is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The effect of external sulfate attack was studied-Es (very sever exposure SO4>10000ppm) according to ACI 318-11. The mix design method of SCC used is according to EFNARC 2002, and then must satisfy the criteria of filling ability, passing ability and segregation resistance. The experimental program focuses to study two different chemical composition of sulfate resistance Portland cement with different percentage of silica fume replacement by weight of cement and W/cm (0.3 and 0.3
... Show MoreThe High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu
... Show MoreThe present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil system
... Show MoreThis study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa
... Show More