This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as absorption, reflectivity, the real and imaginary components of the dielectric function, Loss function, reflective index, extinction coefficient were calculated. Thus, the current findings reveal that Pd–BaTiO3 is a promising composition to be synthesised experimentally for various optoelectronic applications. The predicted negative formation energies values of the inspected structures are indicating to exothermic formation process of such materials and more interestingly indicating also to the stability and possibility of synthesizing such materials experimentally.
In this research, a selection of some mineral water was selected on the basis of being the most marketed by the owners of shops in Najaf province, with six types, where daily samples of this water were taken by 50 ml for two months from (1/11/2018 -1/1/2019). The following ions concentrations were measured (Br-, Cl-, F-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), pH and the electrical conductivity were measured and the results were compared with the allowable rates according to the international organizations. It was noted that they conform to international and Iraqi standards.
In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the avai
... Show MoreRecently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua
... Show MoreChoosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia
... Show MoreIn this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
ABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
Random laser gain media is synthesized with different types of dye at the same concentration (1×10-3 M) as an active material and silicon dioxide NPs (silica SiO2) as scatter centers through the Sol-Gel technique. The prepared samples are tested with UV–Vis spectroscopy, Fluorescence Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Diffraction (EDX). The end result demonstrates that doped dyes with silica nanoparticles at a concentration of 0.0016 mol/ml have lower absorbance and higher fluorescence spectra than pure dyes. FESEM scans revealed that the morphology of nanocrystalline silica is clusters of nano-sized spherical particles in the range (25-67) nm. It is con
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.