Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the behavior of square plain (without steel reinforcement) concrete compression members, that has concrete strength of = 24.41 MPa, confined with one layer of CFRP wraps under uniaxial compressive loading. Finally, the outcomes are compared with the finite element models using Abaqus software. Laboratory experimental results showed that confining compression members with CFRP wraps is an efficient strengthening method. In terms of load carrying capacity, an enhancement was measured for about 56.1% of the reference non-confined members. This enhancement was also reached using Abaqus software.
Research aimed to:1- Be acquainted to the two types of personality A,B with the members of the teaching staff of Anbar university 2- The level of the motivational achievement among the teaching staff 3- The level of motivational achievement of the teaching staff of( A,B). 4- Differences of the abstract implications of A,B type 5- The relationship between A and B and the motivational achievement.
Research Tools: the researchers followed measure A, B type of Howard Glaser 1978,and measure of Achievement Motivation for Mansoorm1986.
The Result showed: 1. A tendency of the t
... Show MoreThe demand for electronic -passport photo ( frontal facial) images has grown rapidly. It now extends to Electronic Government (E-Gov) applications such as social benefits driver's license, e-passport, and e-visa . With the COVID 19 (coronavirus disease ), facial (formal) images are becoming more widely used and spreading quickly, and are being used to verify an individual's identity, but unfortunately that comes with insignificant details of constant background which leads to huge byte consumption that affects storage space and transmission, where the optimal solution that aims to curtail data size using compression techniques that based on exploiting image redundancy(s) efficiently.
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreAs the temperature of combustion gases is higher than the melting temperature of the turbine materials, cooling of turbine parts in a gas turbine engine is necessary for safe operation. Cooling methods investigated in this computational study included cooling flow losses. Film-cooling is one typically used cooling method whereby coolant is supplied through holes passage, in present study the holes placed along the camber line of the blade. The subject of this paper is to evaluate the heat transfer that occur on the holes of blade through different
blowing coolant rates. The cases of this study were performed in a low speed wind tunnel with two tip gap at small and large (0.03 and 0.09cm) and multiple coolant flow rates through the fil
Increasing world demand for renewable energy resources as wind energy was one of the goals behind research optimization of energy production from wind farms. Wake is one of the important phenomena in this field. This paper focuses on understanding the effect of angle of attack (α) on wake characteristics behind single horizontal axis wind turbines (HAWT). This was done by design three rotors different from each other in value of α used in the rotor design process. Values of α were (4.8˚,9.5˚,19˚). The numerical simulations were conducted using Ansys Workbench 19- Fluent code; the used turbulence model was (k-ω SST). The results showed that best value for extracted wind energy was at α=19˚, spread distance of wak
... Show MoreThere are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to so
... Show MoreTitanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreThis paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show More