Preferred Language
Articles
/
WBbuFIcBVTCNdQwCpTXP
Widening of the optical band gap of CdO2(1-X)Al(X) thin films prepared by pulsed laser deposition
...Show More Authors

In this study, doped thin cadmium peroxide films were prepared by pulsed laser deposition with different doping concentrations of aluminium of 0.0, 0.1, 0.3, and 0.5 wt.% for CdO2(1-X)Al(X) and thicknesses in the range of 200 nm. XRD patterns suggest the presence of cubic CdO2 and the texture factor confirms that the (111) plane was the preferential growth plane, where the texture factor and the grain size decreased from 2.02 to 9.75 nm, respectively, in the pure sample to 1.88 and 5.65 nm, respectively, at a concentration of 0.5 wt%. For the predominant growth plane, the deviation of the diffraction angle Δθ and interplanar distance Δd from the standard magnitudes was 2.774° and 0.318 Å, respectively, for the pure sample decreased to − 2.633° and 0.301 Å for the largest doping concentration. The optical absorption was found to decrease with increasing doping concentration, where the changes in threshold wavelengths from the standard λ = 496 nm were blue shifted by Δλ = 142, 133, 128, and 152 nm, respectively, for the concentrations used. The occurrence of such blue shifts points to a widening of the band gap to Eg = 3.5, 3.4, 3.35, and 3.6 eV for concentrations of 0.0, 0.1, 0.3, and 0.5 wt%, respectively.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 21 2018
Journal Name
Iraqi Journal Of Physics
Spectroscopic study the plasma parameters for Pb doped CuO prepared by pulse Nd:YAG laser deposition
...Show More Authors

In this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Spectroscopic study the plasma parameters for SnO2 doped ZnO prepared by pulse Nd:YAG laser deposition
...Show More Authors

 In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located  that  The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.

View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Characterization of silver polyaniline nanocomposite thin films prepared by microwave induced plasma
...Show More Authors

Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 21 2023
Journal Name
Mater Sci: Mater Electron
Pulsed laser deposition of nanostructured CeO2 antireflection coating for silicon solar cell
...Show More Authors

Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field

... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 23 2025
Journal Name
Iraqi Journal Of Applied Physics
Effect of Gas Mixing Ratio on Energy Band Gap of Mixed-Phase Titanium Dioxide Nanostructures Prepared by Reactive Magnetron Sputtering Technique
...Show More Authors

View Publication
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Optical properties of CdO thin films
...Show More Authors

Cadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Thi – Qar Science
Enhanced of the Two photon Absorption in Nanostructure Wide Band gap Semiconductor CdS using femtosecond Laser
...Show More Authors

We observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and

View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of Fe- doped ZnO thin films prepared by Sol–Gel spin coating process and their photocatalytic activities
...Show More Authors

Pure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
International Review Of Physics (e-journal) (irephy)
Red shift band enhancement of the nanostructure ZnO100-xAlx thin films as a function of Al concentration for optoelectronic applications
...Show More Authors

Preview PDF
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
Preparation of thin films of SiCN from gas-phase reaction induced by TEA-CO2 laser and study of their optical properties
...Show More Authors

In this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog

... Show More
View Publication Preview PDF