We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test cases. As such, the proposed strategy can potentially enhance the quality of product with minimal cost in terms of overall resource usage and time execution. As a case study, this paper describes the step-by-step application of the strategy for testing a 4-bit Magnitude Comparator Integrated Circuits in a production line. Comparatively, our result demonstrates that the proposed strategy outperforms the traditional block partitioning strategy with the mutant score of 100% to 90%, respectively, with the same number of test cases.
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
The Child is the first sedum for the human society performing, and we deal in our
research to explain the nature of the mutual relations in between the form and the medicine
social caring foundation. So the motherhood and the childhood nowadays become the most
dedicated in the researchers works, whom interesting in the social affairs, and that whom
work in the medicine field as scientists.
So the child is the future man and must be in wright body construction that need to great
care and interest to make him wright mind through capability of performing anything support
to him.
In our research we deal with the main factors in which lead to infect the child by the
creative malfunction, like the environmental and m
Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreIn this work, the switching nonlinear dynamics of a Fabry-Perot etalon are studied. The method used to complete the solution of the differential equations for the nonlinear medium. The Debye relaxation equations solved numerically to predict the behavior of the cavity for modulated input power. The response of the cavity filled with materials of different response time is depicted. For a material with a response time equal to = 50 ns, the cavity switches after about (100 ns). Notice that there is always a finite time delay before the cavity switches. The switch up time is much longer than the cavity build-up time of the corresponding linear cavity which was found to be of the order of a few round-trip ti
... Show MoreThe flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More