Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More
Statistical control charts are widely used in industry for process and measurement control . in this paper we study the use of markov chain approach in calculating the average run length (ARL) of cumulative sum (Cusum) control chart for defect the shifts in the mean of process , and exponentially weighted moving average (EWMA) control charts for defect the shifts for process mean and , the standard deviation . Also ,we used the EWMA charts based on the logarithm of the sample variance for monitoring a process standard deviation when the observations (products are selected from al_mamun factory ) are identically and independently distributed (iid) from normal distribution in continuous manufacturing .
Geophysics is one of the branches of Earth sciences and deals with studying the Earth's interior by studying the variation of physical properties within rock layers. Applied geophysics depends on procedures that involve the measurements of potential fields, such as the gravitational method. One of the significant oil fields in southern Iraq is represented by the Nahr Omar structure. A power spectrum analysis (SPA) technique was used to collect gravity data within the chosen oil field area in order to confirm the salt dome in the subsurface layers. The analysis of SPA resulted from six surfaces representing the gravity variation values of the depths (m)14300, 3780, 3290, 2170, 810, and 93.5. Gravity surfaces have been converted to de
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreABSTRACT Background: work-related musculoskeletal disorders represent an important occupational health issues among dentists especially neck and low back complaints. Biomarkers of tissue damage as results of occupational physical demands could be used for detection of work related musculoskeletal disorders. Aim: The aim of this study was to assess work- related musculoskeletal disorders, physical work load index, selected salivary biomarkers (Creatine kinase and C - reactive protein) and to find the relation among them. Subjects and Methods: Study participants are consisted of 112 dentists. They were selected from college of dentistry /Baghdad University, health care center in Bagdad city. They were of both gender and aged between 40-45 yea
... Show MoreThere is currently a significantly larger concentration of toxins in our environment than there was in the past. This is mostly attributable to the expansion of modern industry. This investigation was conducted in order to investigate various haematological and biochemical changes in order to determine the effects of Cd on the liver and kidney. Because of its long biological half-life, it is considered hazardous to human health. The effect of sub-lethal doses (40, 80 and 120 mg\Kg) of Cadmium (Cd) on male mice were evaluated for 4 weeks, and analysis was done to estimate their biochemical parameters and antioxidant enzymes. The results showed that Cd-treated mice had considerably lower packed cell volume, red blood cells, and haemoglobin. W
... Show More