Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Image retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and
... Show MoreA novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreThis paper deals with the design and implementation of an ECG system. The proposed system gives a new concept of ECG signal manipulation, storing, and editing. It consists mainly of hardware circuits and the related software. The hardware includes the circuits of ECG signals capturing, and system interfaces. The software is written using Visual Basic languages, to perform the task of identification of the ECG signal. The main advantage of the system is to provide a reported ECG recording on a personal computer, so that it can be stored and processed at any time as required. This system was tested for different ECG signals, some of them are abnormal and the other is normal, and the results show that the system has a good quality of diagno
... Show MoreThe predilection for 5G telemedicine networks has piqued the interest of industry researchers and academics. The most significant barrier to global telemedicine adoption is to achieve a secure and efficient transport of patients, which has two critical responsibilities. The first is to get the patient to the nearest hospital as quickly as possible, and the second is to keep the connection secure while traveling to the hospital. As a result, a new network scheme has been suggested to expand the medical delivery system, which is an agile network scheme to securely redirect ambulance motorbikes to the nearest hospital in emergency cases. This research provides a secured and efficient telemedicine transport strategy compatible with the
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreAbstract
The current research aims to examine the effectiveness of a training program for children with autism and their mothers based on the Picture Exchange Communication System to confront some basic disorders in a sample of children with autism. The study sample was (16) children with autism and their mothers in the different centers in Taif city and Tabuk city. The researcher used the quasi-experimental approach, in which two groups were employed: an experimental group and a control group. Children aged ranged from (6-9) years old. In addition, it was used the following tools: a list of estimation of basic disorders for a child with autism between (6-9) years, and a training program for children with autism
... Show MoreThe present study was Conducted to evaluate the effect of amixture of three species of arbuscular mycorrhizal fungi ( Glomus etunicatum , G. leptotichum and Rhizophagus intraradices ) in Influence on the percentage of the components of NPK and protein of tomato leaves and roots infected with Fusarium oxysporum f.sp. Lycopersici wich cause Fusarial wilt disease , planted for 8 weeks in the presence of the organic matter ( peatmose) , using pot cultures in aplastic green house , Results indicated significant increase in the percentage of the elements of NK and protein of tomato leaves and roots In the control treatment (C), While the percentage of the element P was after infection with the pathogen 4 weaks after mycorrhizal colonization in al
... Show More