Biomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Disease responses of eight wheat cultivars , Saber Beg. , Abu-Ghraib 3, Mexipak , Tamoz 2,Tamoz 3 , IPA 95 ,IPA 99 and Tahadi which were grown in four different sowing date , 25 th October , 19th September , 14th December and 8 January , to leaf rust disease caused by Puccinia recondita were investigated under natural infection conditions at the experimental farm , College of Agriculture , Abu-Ghraib, during the growing season of 1997-1998.Results of this study revealed that IPA 95, IPA 99 and Tahadi showed moderate resistant reaction, while Tamuz 3 was moderateley susceptable . Abu-Ghraib , Saber Beg, Tamuz 2 and Mexipak showed susceptible yeaction to the causal agent . The first sowing date was not suitable for disease progress in compars
... Show MoreCeliac disease (CD) is an inflammatory small intestinal disorder that can lead to severe villous atrophy, and malabsorption . Since the measurement of α-amylase activity is the most widely used biochemical test for the diagnosis of pancreatic and non pancreatic disease , therefore serum α-amylase were studied in the present study in an attempt to evaluate the usefulness of this enzyme in the diagnosis of celiac disease and its relationship with anti gliadin IgA and IgG and serum glucose . Thirty one patients with celiac disease were studied and compared with twenty four healthy individuals . Significant elevation of α-amylase activity , glucose and anti gliadin IgA and IgG were observed in the sera of patients with celiac diseas
... Show MoreMultiple sclerosis (MS) is a chronic, inflammatory, immune mediated disease of the central nervous system, mostly affecting young adults with mean age of 30 years, twice as high in women compared to men. The etiology of MS is not fully elucidated. MS symptoms are directly related to demyelination and axonal loss, along with other psychological symptoms, can result in functional limitations, disability and reduced quality of life (QoL). The QoL assessments in patients with a chronic disease may contribute to improving treatment and could even be of prognostic value. The goals of this study were to compare the QoL of Iraqi patients with relapsing remitting multiple sclerosis (RRMS),using three different diseas
... Show MoreAnemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the two most important types of anemia in rheumatoid arthritis (RA). Functional iron deficiency in ACD can be attributed to overexpression of the main iron regulatory hormone hepcidin leading to diversion of iron from the circulation into storage sites resulting in iron-restricted erythropoiesis. The aim is to investigate the role of circulating hepcidin and to uncover the frequency of IDA in RA. The study included 51 patients with RA. Complete blood counts, serum iron, total iron binding capacity, ferritin, and hepcidin- 25 were assessed. ACD was found in 37.3% of patients, IDA in 11.8%, and combined (ACD/IDA) in 17.6%. Serum hepcidin was higher in ACD than in con
... Show MoreThis study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreAdvances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show More