A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different concentrations, and five ultrasonication times (15, 30, 60, 90, and 120 min) on the stability of water-based graphene nanoplatelets (GNPs) nanofluids. In addition, the viscosity and thermal conductivity of the highest stability samples were measured at different temperatures. For this aim, nineteen different nanofluids with 0.1 wt% concentration of GNPs were prepared via the two-step method. An ultrasonication probe was utilized to disperse the GNPs in distilled water. UV–vis spectrometry, zeta potential, average particle size, and Transmission Electron Microscopy (TEM) were helpful in evaluating the stability and characterizing the prepared nanofluids. TEM and zeta potential results were in agreement with the UV–vis measurements. The highest nanofluid stability was obtained at 60-min ultrasonication time. The prepared water-based pristine GNPs nanofluids were not stable, and the stability was improved with the addition of surfactants. The presence of SDBS, SDS, and CTAB surfactants in the nanofluids resulted in excessive foam. The best water-based GNPs nanofluid was selected in terms of better stability, higher thermal conductivity, and lower viscosity. From all the samples that were prepared in this research, the (1–1) SDBS–GNPs sample with 60-min ultrasonication showed the highest stability (82% relative concentration after 60 days), the second better enhancement in the thermal conductivity of the base fluid (8.36%), and nearly the lowest viscosity (7.4% higher than distilled water).
Thin films of ZnSe arc deposited on glass substrates by thermal evaporation in vacuum with different thickness (1000, 2700, 4000) A° temperature (293-373) °K are studies the electrical properties before and after annealing. The result show decrease D.0 conductivity and increasing the activation energy Eat.
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
The long – term behaviour of polyethylene products used out doors is affected by weathering. In the present work,
weathering test was carried out to find the effect of the environment conditions on the mechanical properties of
HDPE/LLDPE blends with different weight percents (0, 15, 30, and 45 %) relative to the LLDPE by increasing the
exposure times to (100, 150, 200, 250, 300) hr.
A series of tests (destructive), tensile, impact and hardness were carried out on the prepared samples, the results
obtained declare the changes on the material behaviour from ductile to brittle and the polymer shows a decline in the
mechanical properties with increasing the exposure times.
In the present work empirical equations were r
Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreZinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
Background: Poly (methylmethacrylate) is the most widely used material in denture fabrication. The characteristics of acrylic resin which support microorganism development can threaten the oral health of denture users. This study was assigned to prepareand incorporate Ag-Zn zeolite powder into heat cured denture base material as antimicrobial material and to investigate its effect on some properties of heat cured acrylic denture base materials. Materials and methods: Sliver –zinc zeolite was prepared by ion exchange method and characterized then incorporated into poly (methylmethacrylate) powder in0.5% by weight. Specimens were constructed and divided into 6 groups according to the using tests; each group was subdivided into 2 groups
... Show MoreIn this work, varying compositions of SiO2 micro filler were added
with the Polyvinyl Chloride (PVC) and samples have been prepared
using film casting technique. The results have been analyzed and
compared for PVC samples with (1 wt%, 3 wt%, 5 wt% and 10 wt%)
SiO2 micro filler. Mechanical characteristics such as tensile strength,
elongation at break and Young`s modulus were measured for all the
samples, where the tensile strength was increased from 8.39 Mpa for
purified PVC to 16 Mpa for 3% SiO2/PVC composite. Also, thermal
conductivity measurement values illustrated that composite materials
have a good thermal insulation at 10 wt. %, thermal conductivity was
decreased from 0.1684 W/m.