A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different concentrations, and five ultrasonication times (15, 30, 60, 90, and 120 min) on the stability of water-based graphene nanoplatelets (GNPs) nanofluids. In addition, the viscosity and thermal conductivity of the highest stability samples were measured at different temperatures. For this aim, nineteen different nanofluids with 0.1 wt% concentration of GNPs were prepared via the two-step method. An ultrasonication probe was utilized to disperse the GNPs in distilled water. UV–vis spectrometry, zeta potential, average particle size, and Transmission Electron Microscopy (TEM) were helpful in evaluating the stability and characterizing the prepared nanofluids. TEM and zeta potential results were in agreement with the UV–vis measurements. The highest nanofluid stability was obtained at 60-min ultrasonication time. The prepared water-based pristine GNPs nanofluids were not stable, and the stability was improved with the addition of surfactants. The presence of SDBS, SDS, and CTAB surfactants in the nanofluids resulted in excessive foam. The best water-based GNPs nanofluid was selected in terms of better stability, higher thermal conductivity, and lower viscosity. From all the samples that were prepared in this research, the (1–1) SDBS–GNPs sample with 60-min ultrasonication showed the highest stability (82% relative concentration after 60 days), the second better enhancement in the thermal conductivity of the base fluid (8.36%), and nearly the lowest viscosity (7.4% higher than distilled water).
The research includes the synthesis and identification of the mixed ligands complexes of M+2ions in general composition[M(Asn)2(SMX)] Where L- Aspargine (C4H8N2O3)symbolized (AsnH) as a primary ligand and Sulfamethoxazole(C10H11N3O3S) symbolized (SMX) as a secondary ligand. The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na+Asn-): (SMX)] molar ratios with M(II) ions, Where: M(II)=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The UV–Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non-electrolytic nature of the complexes. The antimicrobial a
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreExposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreA new light-weight nanocarbon prepared by spray-drying method to obtain particle size is 21.7 nm based of polylactic acid biodegradable film in antistatic packaging .Bio carbon (biochar) is obtained from plants and soils to naturally absorb and store carbon dioxide from the atmosphere . Therefor it has been used to support biodegradable polylactic acid (PLA) with to obtain 100% recyclable material.
Using plasticizer thymol of polylactic acid and biochar (bio carbon) as composites were prepared by a solution casting method with (0.5-10)wt% biochar. The composites characterized by FTIR, electrical conductivity, mechanical properties , contact angle and Colar and Brightness . Results show th
... Show MoreThe nonlinear optical properties for polymeric (PMMA) doping with dye Rhodmine (R3Go) has been studied .The samples are prepared by normal polymerization method with concentrations of 5x10-5mol/l and a thickness of 272.5µm.
Plasma effect was studied on samples prepared before and after exposure to the Nd: YAG laser for three times 5, 10 and 15 minutes. Z-Scan technique is used to determine the nonlinear optical properties such as; refractive index (n2) and the coefficient of nonlinear absorption (β). It was found that the nonlinear properties is change by increasi
... Show More
The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced nanomaterials type Al2O3 enhanced the HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (
... Show MoreThe effect of adding different volume of coumarin dye (5, 15, 25 and 35) ml on optical properties of Poly (Methyl Meth Acrylate) was studied. Films of pure PMMA and PMMA with different volume of coumarin dye (5, 15, 25 and 35) ml were prepared using the casting technique. Transmission and absorption of the films were measured by using UV-VIS spectrometer technique type (100 Conc), in order to assess the type of transmission which was found an indirect transition. An optical energy gap of pure PMMA is (4.95e v) and after adding coumarin with volume (25, 35) ml, the energy gap for PMMA decrease by (0.05) compere to pure PMMA films and addition energy gap appear equal to (4.1 e v). It was found that the absorption coefficient, extinction coeff
... Show MoreBackground: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that add
... Show MoreThe proton-neutron interacting boson model (IBM-2) has been used to make a schematic study of the Ruthenium ( ) isotopes of mass region around with and . For each isotope of the values of the IBM-2 Hamiltonian parameters, which yield an acceptable results for excitation energies in comparison with those of experimental data, have been determined. Fixed values of the effective charges ( ) and of the proton and neutron g factors ( and ) have been chosen for all isotopes under study. The calculated electric quadrupole moments of state, transitions, the magnetic dipole moments transitions and mixing ratios are in reasonable agreement with the experimental data.
... Show MoreThin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms