The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital media. Our investigation rigorously assesses the capabilities of these advanced LLMs in identifying and differentiating manipulated imagery. We explore how these models process visual data, their effectiveness in recognizing subtle alterations, and their potential in safeguarding against misleading representations. The implications of our findings are far-reaching, impacting areas such as security, media integrity, and the trustworthiness of information in digital platforms. Moreover, the study sheds light on the limitations and strengths of current LLMs in handling complex tasks like image verification, thereby contributing valuable insights to the ongoing discourse on AI ethics and digital media reliability.
Atenolol was used with ammonium molybdate to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and ammonium molybdate in an aqueous medium to obtain a dark brown precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.1-3.5 mmol/L for cell A and 0.3-3.5 mmol/L for cell B, and LOD 133.1680 ng/100 µL and 532.6720 ng/100 µL for cell A and cell B respectively with correlation coefficient (r) 0.9910 for cell A and 0.9901 for cell B, RSD% was lower than 1%, (n=8) for the determination of ate
... Show MoreThis paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.
The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show MoreThe present study aimed to identify the availability of the National Council of Teachers of Mathematics (NCTM) standards in the content of mathematics textbooks at the basic education stage in the Sultanate of Oman. The study used the descriptive-analytical approach, adopting the method of content analysis through using a content analysis tool that included (43) indicators distributed on the four NCTM standards related to the field of geometry, after verifying their validity and reliability. The study population consisted of mathematics textbooks (first and second semesters) for ninth-grade students in the Sultanate of Oman in the academic year 2018/2019, while the sample consisted of Geometry units in the content of those books, which a
... Show MoreThe aim of the research is to reveal the reality of teacher performance evaluation in the Sultanate of Oman in light of some global models. The study followed a qualitative descriptive research design. Seven forms of teacher formative and summative assessments were analyzed. Besides, an analytical template was developed, consisting of six areas related to the teaching performance of teachers. These included: lesson planning and preparation, learning environment, education, professional development, student academic, and community and parental partnership. The study reached a number of results; the most notable is the lack of change of forms for more than a decade despite the rapid development of the educational system in the sultanate in
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreTransit agencies constantly need information about system operations and passengers to support their regular scheduling and operation planning processes. The lack of these processes and cultural motivations to use public transportations contributes enormously to the reliance on the private cars rather than public transportation, resulting in traffic congestions. The traffic congestions occur mainly during peak hours and the accidents happening as a result of road accidents and construction works. This study investigates the effects of weekday and weekend travel variability on peak hours of the passenger flow distribution on bus lines, which can effectively reflect the degree of traffic congestion. A study of passen
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show More