The removal of congo red (CR) is a critical issue in contemporary textile industry wastewater treatment. The current study introduces a combined electrochemical process of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of this dye. Moreover, it discusses the formation of a triple composite of Co, Mn, and Ni oxides by depositing fixed salt ratios (1:1:1) of these oxides in an electrolysis cell at a constant current density of 25 mA/cm2. The deposition ended within 3 hours at room temperature. X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive X-ray (EDX) characterized the structural and surface morphology of the multi-oxide sediment. Marvelously, the deposition has simultaneously occurred on both anodic and cathodic graphite electrodes. These electrodes besides aluminum (Al) are employed as anodes in the EC-EO system, and the results were optimized by response surface methodology (RSM). The optimum operating conditions were a current density of 6 mA/cm2, pH = 7, and NaCl of 0.26 g/L. The results showed that the combined system eliminated more than 99.91% of the congo red dye with a removal of chemical oxygen demand (COD) of around 97% with 1.64 kWh/kg of dye of the consumed energy. At low current density, the current delivered for the composite anode was more than for the Al anode with the same surface area. On top of this superiority, the EC-EO scenario is a practical hybrid process to remove CR in an environmentally friendly pathway.
This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show MoreBackground: White-spot lesion is one of the problems associated with the fixed orthodontic treatment. The aims of this in-vitro study were to investigate enamel damage depth on adhesive removal when the adhesive were surrounded by sound, demineralized or demineralized enamel that had been re-mineralized prior to adhesive removal using 10% Nano-Hydroxy apatite and to determine the effect of three different adhesive removal techniques. Materials and methods: Composite resin adhesive (3M Unitek) was bonded to 60 human upper premolars teeth which were randomly divided in to three groups each containing ten sound teeth and ten teeth with demineralized and re-mineralized lesions adjacent to the adhesive. A window of 2 mm was prepared on the bucca
... Show MoreBackground: Poly (methyl methacrylate) has been widely utilized for fabrication of dentures for many years as it has good advantages but not achieved all demands of the mechanical properties such as low transverse strength, low impact strength, low surface hardness, high water solubility and high water sorption. Material and method: To provide bonding between ZrO2 nanoparticles and PMMA matrix, the ZrO2 Nano-fillers were surface-treated with a saline coupling agent. Plasma surface treatment of polyethylene (PE) fiber was done to change surface fiber by using DC- glow discharge system. For characterization of interring any functional groups, the (FTIR) spectrum were done .then the mechanical properties studied to choose the appropriate perc
... Show MoreDuring the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants. The present study aimed to investigate the efficiency of alum as a primary coagulant in conjunction with mallow, Arabic gum and okra as coagulant aids for the treatment of water samples containing synthetic turbidity of kaolin. Jar test experiments were carried out for initial raw water turbidities 100, 200 and 500 (NTU). The optimum doses of alum, mallow, Arabic gum and okra were 20, 2, 1 and 1 mg/L for100 NTU turbidity level, 35, 4, 2 and 3 mg/L , for 200NTU turbidity level and 50, 8, 10 and 8 mg/L for 500 NTU turbidity leve
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Transition metal complexes of Co(II) and Ni(II) with azo dye 3,5-dimethyl-2-(4-nitrophenylazo)-phenol derived from 4-nitoaniline and3,5-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis,electronic data, FT-IR,UV-Vis and 1 HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of thecomplexes formed were studies following the mole ratio and continuous variation methods, Beer ' s law obeyed over a concentrationrange (1x10 -4 - 3x10 -4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, thestoichiomerty of the complexes has been found to be 1:2 (Metal:ligand). On the basis of physicochemical data tetrahedral
... Show More

