Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.
Abstract
This study investigates the mechanical compression properties of tin-lead and lead-free alloy spherical balls, using more than 500 samples to identify statistical variability in the properties in each alloy. Isothermal aging was done to study and compare the aging effect on the microstructure and properties.
The results showed significant elastic and plastic anisotropy of tin phase in lead-free tin based solder and that was compared with simulation using a Crystal Plasticity Finite Element (CPEF) method that has the anisotropy of Sn installed. The results and experiments were in good agreement, indicating the range of values expected with anisotropic properties.
Keywords<
... Show MoreThe current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreIn this study, several ionanofluids (INFs) were prepared in order to study their efficiency as a cooling medium at 25 °C. The two-step technique is used to prepare ionanofluid (INF) by dispersing multi-walled carbon nanotubes (MWCNTs) in two concentrations 0.5 and 1 wt% in ionic liquid (IL). Two types of ionic liquids (ILs) were used: hydrophilic represented by 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] and hydrophobic represented by 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. The thermophysical properties of the prepared INFs including thermal conductivity (TC), density and viscosity were measured experimental
Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
Let be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the
... Show MoreThe Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.
Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show More