In this paper, we deal with a dynamical system that can demonstrate a chaotic attractor of Rossleroscillator. We simulate the Rosslerequations numerically then we investigate the model experimentally. Numerically, the Rossler parameter a and b were fixed and c was changed.The evolution of the system exhibits period, period-doubling, second period doubling, and chaos when control parameters are changed. This evolution can be seen by analyze the time series, the bifurcation diagrams and phase space. Experimentally, the evolution of the system exhibited the same numerical behavior by changing the resistance (Rv) in Rossler circuit that represent as control parameter.
This paper presents the dynamic responses of generators in a multi-machine power system. The fundamental swing equations for a multi-machine stability analysis are revisited. The swing equations are solved to investigate the influence of a three-phase fault on the network largest load bus. The Nigerian 330kV transmission network was used as a test case for the study. The time domain simulation approach was explored to determine if the system could withstand a 3-phase fault. The stability of the transmission network is estimated considering the dynamic behaviour of the system under various contingency conditions. This study identifies Egbin, Benin, Olorunsogo, Akangba, Sakete, Omotosho and Oshogbo as the key buses w
... Show Moreالنظام السياسي اليمني : دراسة في المتغيرات الداخلية
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreBackground: Whey protein is the green-yellow colored, liquid portion of the milk, and it is also called the cheese serum, it is obtained after the separation of curd, during the coagulation of the milk. It contains a considerable amount of α-helix pattern with an evenly distributed hydrophobic and hydrophilic as well as basic and acidic amino acids along with their polypeptide chain. The major whey protein constituents include β-lactoglobulin (β-LG),α-lactalbumin (α-LA), immunoglobulins (IG), bovine serum albumin (BSA), bovine lactoperoxidase (LP), bovine lactoferrin (BLF) and minor amounts of a glycol macro peptide (GMP). Osseointegration can be defined as a process that is immune driven which leads to the formatio
... Show MoreThis study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and
... Show MoreAbstract
In this study, the effect of carboxylic methyl cellulose (CMC), and sodium dodcyl benzene sulfonate (SDBS) as an aqueous solution on the drag reduction was investigated. Different concentrations of (CMC) and (SDBS) such as (50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm) were used to analyze the aqueous solution properties, including surface tension, conductivity, and shear viscosity. The optimum four concentrations (i.e., 50, 100, 200, and 300 ppm) of fluid properties were utilized to find their effect on the drag reduction. Two different PVC pipe diameters (i.e., 1" and 3/4") were used in this work. The results showed that blending CMC with SDBS gives
... Show MoreBackground Obstructing dentinal tubules is a valuable approach for managing dentin hypersensitivity. Although various agents promote dentin remineralization, direct comparisons between theobromine, bioactive glass (BAG), and nano-hydroxyapatite (Nano-HAP) under simulated oral conditions remain limited. To fill this gap, this in vitro study aimed to evaluate and compare the effectiveness of these three treatments on exposed cervical dentin. The assessment focused on their chemical, morphological, and mechanical effects on dentin. Materials and methods Forty-eight human dentin slabs were obtained from the cervical portions of twelve sound premolar teeth. Baseline Raman spectroscopy and VMH tests were done to exclude outliers. All specimens we
... Show More