Preferred Language
Articles
/
VoZ8soYBIXToZYAL47HT
Multi-Channel Distributed DSA Networks: Connectivity and Rendezvous Tradeoffs
...Show More Authors

In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this invisibility as a Poisson thinning process and show that invisibility is even more pronounced with channel abundance. Following the disk graph model, we represent the multiple channels as parallel edges in a graph and build a multi-layered graph (MLG) in R2. In order to study the connectivity, we show how percolation occurs in the MLG by coupling it with a typical discrete percolation. Using a Boolean model and the MLG, we study both cases of primaries' absence and presence. For both cases, we define and characterize connectivity of the secondary network in terms of the available number of channels, deployment densities, number of simultaneous transmissions per node, and communication range. When primary users are absent, we derive the critical number of channels which maintains supercriticality of the secondary network. When primary users are present, we characterize and analyze the connectivity for all the regions: channel abundance, optimal, and channel deprivation. For each region we show the requirement and the outcome of using either type of rendezvous techniques. Moreover, we find the tradeoff between deployment-density versus rendezvous probability which results in a connected network. Our results can be used to decide on the goodness of any channel rendezvous algorithm by computing the expected resultant connectivity. They also provide a guideline for achieving connectivity using minimal resources.

Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2017
Journal Name
International Journal Of Science And Research (ijsr)
Multi Response Optimization of Submerged Arc Welding Using Taguchi Fuzzy Logic Based on Utility Theory
...Show More Authors

Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Multi-Objective Capacitated Transportation Problem with Mixed Constraints using different forms of membership functions
...Show More Authors

In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.

View Publication Preview PDF
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Heliyon
Stigma towards health care providers taking care of COVID-19 patients: A multi-country study
...Show More Authors

View Publication
Scopus (33)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Mon Oct 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Robot Path Planning in Unknown Environments with Multi-Objectives Using an Improved COOT Optimization Algorithm
...Show More Authors

Scopus (13)
Crossref (3)
Scopus Crossref
Publication Date
Fri Feb 13 2026
Journal Name
Journal Of Baghdad College Of Dentistry
The role of 3-dimensional multi-detector computed tomography in the diagnosis of Eagle’s syndrome and correlation with severe headache and migraine (Iraqi study)
...Show More Authors

Background: The styloid process is a cylindrical bone (protrusion). It situated above the common carotid artery between the external and internal branches immediately proximal to the internal jugular vein and facial nerves. The styloid process varies in length also it may be absent as well as elongated. Classically, an elongated styloid process and calcified of stylohyoid ligament causes Eagle’s syndrome. The aim of this study was to examine the styloid process using 3 dimensional multi-detector computed tomography (3D-MDCT) to detect the presence of Eagle’s syndrome that causes severe headache and migraine. Materials and methods: One hundred patients with severe headache and migraine were exposed to 3D- multi-detector CT with special

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 26 2021
Journal Name
Nanomaterials
Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes
...Show More Authors

Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that

... Show More
View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2009
Journal Name
2009 7th International Conference On Information, Communications And Signal Processing (icics)
The effect of traffic load on using XCAST based routing protocol in wireless ad hoc networks
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Overlapping Structure Detection in Protein-Protein Interaction Networks Using a Modified Version of Particle Swarm Optimization
...Show More Authors

In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref