In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this invisibility as a Poisson thinning process and show that invisibility is even more pronounced with channel abundance. Following the disk graph model, we represent the multiple channels as parallel edges in a graph and build a multi-layered graph (MLG) in R2. In order to study the connectivity, we show how percolation occurs in the MLG by coupling it with a typical discrete percolation. Using a Boolean model and the MLG, we study both cases of primaries' absence and presence. For both cases, we define and characterize connectivity of the secondary network in terms of the available number of channels, deployment densities, number of simultaneous transmissions per node, and communication range. When primary users are absent, we derive the critical number of channels which maintains supercriticality of the secondary network. When primary users are present, we characterize and analyze the connectivity for all the regions: channel abundance, optimal, and channel deprivation. For each region we show the requirement and the outcome of using either type of rendezvous techniques. Moreover, we find the tradeoff between deployment-density versus rendezvous probability which results in a connected network. Our results can be used to decide on the goodness of any channel rendezvous algorithm by computing the expected resultant connectivity. They also provide a guideline for achieving connectivity using minimal resources.
This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
Future wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show MoreIn this paper the use of a circular array antenna with adaptive system in conjunction with modified Linearly Constrained Minimum Variance Beam forming (LCMVB) algorithm is proposed to meet the requirement of Angle of Arrival (AOA) estimation in 2-D as well as the Signal to Noise Ratio (SNR) of estimated sources (Three Dimensional 3-D estimation), rather than interference cancelation as it is used for. The proposed system was simulated, tested and compared with the modified Multiple Signal Classification (MUSIC) technique for 2-D estimation. The results show the system has exhibited astonishing results for simultaneously estimating 3-D parameters with accuracy approximately equivalent to the MUSIC technique (for estimating elevation and a
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
Pharmaceutical-instigated pollution is a major concern, especially in relation to aquatic environments and drugs such as meropenem antibiotics. Adsorbents, such as multi-walled carbon nanotubes, offer potential as means of removing polluting meropenem antibiotics and other similar compounds from water. In order to evaluate the effectiveness of multi-walled carbon nanotubes in this capacity, various experimental parameters, including contact time, initial concentration, pH, temperature and the dose of adsorbent have been investigated. The Langmuir and the Freundlich isotherm models have been used. The data obtained using a modified Langmuir model have been consistent with the experimental ones; the best pH value has been obtained to have the
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreGeographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreForeign direct investment has seen increasing interest worldwide, especially in developing economies. However, statistics have shown that Yemen received fluctuating FDI inflows during the period under study. Against this background, this research seeks to determine the relationship and impact of interest rates on FDI flows. The study also found other determinants that greatly affected FDI inflows in Yemen for the period 1990-2018. Study data collected from the World Bank and International Monetary Fund databases. It also ensured that the time series were made balanced and interconnected, and then the Auto Regressive Distributed Lag method used in the analysis. The results showed that the interest rates and
... Show More