This investigation was undertaken to evaluate the effectiveness of using Hydrated lime as a (partial substitute) by weight of filler (lime stone powder) with five consecutive percentage namely (1.0, 1.5, 2.0, 2.5, 3.0) % by means of aggregate treatment, by introducing dry lime on dry and 2–3% Saturated surface aggregate on both wearing and binder coarse. Marshall design method, indirect tensile test and permanent deformation under repeated loading of Pneumatic repeated load system at full range of temperature (20, 40, 60) C0 were examined The study revealed that the use of 2.0% and 1.5 % of dry and wet replacement extend the pavement characteristics by improving the Marshall properties and increasing the TSR%. Finally, increase permanent deformation distress form by exhibiting mixture with lower slope value and flatter curve trend of intercepts plus the improvement in resilient modulus properties. The test result indicated that despite the less effect of wet method in Marshall Properties, it seems to most effective in reduce the premature of combined moisture damage and permanent deformation that were considered the major distress form currently, better than dry method of replacement
Recycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior
... Show MoreThe excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and
... Show MorePermanent deformation (rutting) of asphalt mixtures is one of the major forms of distress. Aggregate gradation is one of the most important factors affecting the permanent deformation of asphalt mixtures. Other variables are also important to understand their effects on the mixture such as temperature, binder content and compaction level. For this purpose 6 different aggregate gradations have been chosen and each one of them has been manufactured / tested with different variables. The results showed that at relatively low temperature there is little effect of aggregate packing on the permanent deformation. However, as the temperature increases the effect of gradation becomes apparent, in that the better the packing the better the resistance
... Show MoreReflective cracking is one of the primary forms of deterioration in pavements. It is widespread when Asphalt concrete (AC) overlays are built over a rigid pavement with discontinuities on its surface. Thus, this research work aims to reduce reflection cracks in asphalt concrete overlay on the rigid pavement. Asphalt Concrete (AC) slab specimens were prepared in three thicknesses (4, 5, and 6 cm). All these specimens were by testing machine designed and manufactured at the Engineering Consulting Office of the University of Baghdad to examine for the number of cycles and loads needed to propagate the reflection cracking in the asphalt concert mixture at three temperatures (20, 30, and 30°C). It was noticed that the higher thickness A
... Show MoreModern asphalt technology has adopted nanomaterials as an alternative option to assert that asphalt pavement can survive harsh climates and repeated heavy axle loading during service life and prolong pavement life. This work aims to elucidate the behavior of the modified asphalt mixture fracture model and assess the fatigue and Rutting performance of Hot Mix Asphalt (HMA) mixes using the outcomes of indirect Tensile Strength (IDT), Semicircular bend (SCB) and rutting resistance; for this, a single PG (64−16) nanomodified asphalt binder with 5 % SiO2 and TiO2 have been investigated through a series of laboratory tests, including: Resilient modulus, Creep compliance, and tensile strength, SCB, and Flow Number (FN) to study their potential
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreIn recent years, various methods have been developed to enhance the characteristics of asphalt pavement in order to face the continuous challenges of increasing traffic loads and changing climate conditions. One of the most popular and successful methods is modifying the asphalt mixtures or asphalt binder with the addition of polymers. Therefore, two types of Polyethylene (PE) polymer, High-Density PE (HDPE) and Low-Density PE (LDPE), are used in this research. Two methods were applied to prepare PE-modified asphalt mixtures: Semi-Wet Method (S-WM) and Dry Method (DM). The findings of the investigation indicated that the addition of PE polymer can reduce the wear loss of aggregate. In general, the experimental results revealed that asphalt
... Show More