Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Image fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreThe present study include a new developed method of analysis for determination of drug Spironolaction (SP) in some Pharmaceuticals by Spectrofluorometric method. Spironolaction was determined under optimal experimental condition that follows :- The excitation spectrum was (l=351 nm), the emmetion spectrum was (l=518 nm), pH=1, the suitable temperature for reaction 60oC and the optimal time less than (3) minute. The analysis and rang statistical data was:-Linear dynamic rang (1-10) ?g.ml-1, the detection limit (D.L = 0.023 ?g.ml-1), Molar absorptivity (? = 29875 liter mole-1 cm-1), Relative standard deviation (%RSD = 0.78), (%Erel = 3.3) and recovery (Rec = 96.6) percentage. Determination of Spironolactone was accomplished by two methods
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
Electrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.
The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
This work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).