Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
This study were implemented on (60) broiler chick with one day age divided into three equal groups , first one was given basal diet while group two and three given adiet contain 0.01% ,0.02% tryptophan respectively for 7 weeks . The results show that the chicks recevd the tryptophan have asigneficant increasment in hemoglobin concentration, red blood cells count, packed cell volume and increased the level of globuline concentration and lymphocyte % which mean that the addition of tryptophan improve blood picture charactores and the immunity of the broiler chickens and this evident from the good health state and decrease the mortality among birds .
Leaching process applied for the extraction of bio active compounds from dried roots of (Elecampane) Inula helenium. Ethanol, hexane and distillated water were used as solvents. Roots were soaked with ethanol (5% w/v) with various concentration of ethanol (30 to 98%) at one day to know effect concentration of the solvent with concentration of bio active compound in Inula helenium. The same procedure was done using hexane as solvent. Also distilled water was used as solvent for extraction 5%(w/v) where plant material was soaked in water at different temperatures (25, 40, 65, 80, and 90) C. In all solvents undertaken, the effect of time duration on active ingredient (Thymol, Isoalatolactone, Alatolactone, 10-isobutyryl-oxy 8-9-epoxy thymol is
... Show MoreThis study shows impoliteness as a form of face-threatening that can be intentionally caused by verbal threats in a particular setting. It investigates: what strategies and mitigators do Iraqi-Kurdish English as a foreign language (EFL) learners use in situations of threat responses? The present investigation paper aims to examine impoliteness strategies and mitigators by these learners when they respond to threatening situations in their context. Thus, it fills a gap in pragmatics literature by investigating the reactions to threats in an Iraqi-Kurdish EFL context. To this end, 50 participants have participated in this study. An open-ended questionnaire in the form of a Discourse Completion Task (DCT) is used to elicit responses fr
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.
The subje
... Show More