Low salinity (LS) water flooding is a promising EOR method which has been examined by many experimental studies and field pilots for a variety of reservoirs and oils. This paper investigates applying LS flooding to a heavy oil. Increasing the LS water temperature improves heavy oil recovery by achieving higher sweep efficiency and improving oil mobility by lowering its viscosity. Steam flooding projects have reported many problems such as steam gravity override, but override can be lessened if the steam is is alternated with hot LS water. In this study, a series of reservoir sandstone cores were obtained from Bartlesville Sandstone (in Eastern Kansas) and aged with heavy crude oil (from the same reservoir) at 95°C for 45 days. Five reservoir cores were used in this study, and five treatments were performed. They were flooded with (a) steam; (b) formation hot water (FHW); (c) low salinity hot water (LSHW; (d) steam + FHW; and (e) steam + LSHW (so-called LSASF). The laboratory experiments showed that basic water flooding using FW recovered approximately 50% of OOIP. After that initial flood, upon switching to the various steam, FHW, LSHW, steam + FHW, and steam + LSHW treatments, the incremental oil recoveries were 5, 3.1, 6.3, 7.5, and 12% OOIP, respectively. The contact angle measurements showed that injecting steam + LSHW alters the wettability considerably more than using steam + FHW. The results of this work show that water flooding using LSHW in reservoir cores could improve oil recovery significantly because it both reduces oil viscosity and alters the rock wettability towards more water-wet. The results also showed using LSHW alternated with steam is more beneficial than using steam only or alternated with regular water due to the combined benefits of reducing gravity override and altering the wettability. Using LSHW water is more economical than using steam and gives significantly improved oil recovery, and using LSHW is more beneficial than ambient temperature LS water.
The present work included study of the effects of weather conditions such as solar radiation and ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency
... Show MoreThis study includes adding chemicals to gypseous soil to improve its collapse characteristics. The collapse behavior of gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59% was investigated using five types of additions (cement dust, powder sodium meta-silicate, powder activated carbon, sodium silicate solution, and granular activated carbon). The soil was mixed by weight with cement dust (10, 20, and 30%), powder sodium meta-silicate (6%), powder activated carbon (10%), sodium silicate solution (3, 6, and 9%), and granular activated carbon (5, 10, and 15%). The collapse potential is reduced by 86, 71, 43, 37, and 35% when 30% cement dust, 6% powder sodium meta-silicate, 10% powder activated
... Show MoreIn this research, the structural behavior of reinforced concrete columns made of normal and hybrid reactive powder concrete (hybrid by steel and polypropylene fibers) subjected to chloride salts with concentration was 8341.6 mg/l. The study consists of two parts, the first one is experimental study and the second one is theoretical analysis. Three main variables were adopted in the experimental program; concrete type, curing type and loading arrangement. Twenty (120x120x1200) mm columns were cast and tested depending on these variables. The samples were reinforced using two different bars; Ø8 for ties and Ø12 with minimum longitudinal reinforcement (0.01Ag). The specimens were divided into two main groups based o
... Show MoreNear surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa
... Show MoreMunicipal solid waste is one of the most important environmental problems in the world and is an important source of environmental pollution and contributes significantly to the pollution of the basic environmental elements of soil, water and air. The management of municipal waste in general is a process of monitoring, collection, treatment or recycling if possible or disposal of waste. This term is used for waste produced by some human activities. States provide this process to mitigate the negative effects of waste on the environment, health and appearance of the city. It is possible to find solutions to the problem of solid waste and make it an important source of income and contribute to securing employment oppor
... Show MoreTwo oil wells were tested to find the abnormal pressure zones using sonic log technique. We found that well Abu-Jir-3 and Abu-Jir-5 had an abnormal pressure zones from depth 4340 to 4520 feet and 4200 to 4600 feet, respectively. The maximum difference between obtained results and the field measured results did not exceed 2.4%.
In this paper, the formation pressures were expressed in terms of pressure gradient which sometimes reached up to twice the normal pressure gradient.
Drilling and developing such formations were dangerous and expensive.
The plotted figures showed a clear derivation from the normal trend which confirmed the existence of abnormal pressure zones.
Study of determining the optimal future field development has been done in a sector of South Rumaila oil field/ main pay. The aspects of net present value (economic evaluation) as objective function have been adopted in the present study.
Many different future prediction cases have been studied to determine the optimal production future scenario. The first future scenario was without water injection and the second and third with 7500 surface bbls/day and 15000 surface bbls/day water injection per well, respectively. At the beginning, the runs have been made to 2028 years, the results showed that the optimal future scenario is continuing without water in