The Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial time by using the Benders decomposition technique and cutting plane approximation. To ensure the nonincreasing character of the Benders upper limit, a local branching method was also added to improve the convergence. Simulation results indicated that the proposed method is superior to the existing method and has better overall performance.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.
The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.
Akaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Abstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreThis study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
... Show More