This study presents an investigation about the effect of fire flame on the punching shear strength of hybrid fiber reinforced concrete flat plates. The main considered parameters are the fiber type (steel or glass) and the burning steady-state temperatures (500 and 600°C). A total of 9 half-scale flat plate specimens of dimensions 1500mm×1500mm×100mm and 1.5% fiber volume fraction were cast and divided into 3 groups. Each group consisted of 3 specimens that were identical to those in the other groups. The specimens of the second and the third groups were subjected to fire flame influence for 1 hour and steady-state temperature of 500 and 600°C respectively. Regarding the cooling process, water sprinkling was applied directly after the burning stage to represent the sudden cooling process. Generally, the obtained results exhibited a significant increase in the punching shear capacity of the fiber-reinforced slabs as compared to the corresponding no fiber-reinforced slabs even at elevated burning temperatures 600°C. The ultimate load was increased by about 16.6, 19, and 21.5% at temperatures of 25, 500, and 600°C respectively, for steel fiber reinforced slabs and by about 13.9, 27.2, and 34.6% for slabs containing two mixed types of fibers (steel and glass), as compared with the reference specimen at the same temperatures respectively. In addition, the results indicated that fibers' presence in concrete resulted in gradually punching failure with more ductile mode, whereas the failure was sudden with a brittle mode in the slabs that did not contain fibers.
The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Image quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreNumeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreMJ Abbas, AK Hussein, Journal of Physical Education, 2019