Abstract There are many uncertainty sources that may affect the statistical reasoning. However, traditional methods can not deal with all kinds of uncertainty sources, which has led many researchers to develop traditional methods. Studies still exist to this day, making hypotheses to create a common understanding for the purpose of reaching new solutions through the use of new methods that combine traditional and modern theories of sources of uncertainty The aim of current study was to develop the adaptive fuzzy linear regression model in the case of using inaccurate data as the source of uncertainty. Specifically, the model proposed by [1]. However, instead of what dominant in fuzzy linear regression analysis, we used a new born method that uses the positions and entropy to fuzzification instead membership function. As for the comparison method we used the mean absolute difference as performance's accuracy measures. The results of this study showed the efficiency of the use of the position and the entropy function to describe the fuzzy numbers over the use of the membership functions. The results also indicated that the develop model has the best results compared to the model adapted using the membershop functions in [1].
In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreIn this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of
n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreIn this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.
According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability
p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive
preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the
average durations of the preventive and corrective maintenance actions a
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
In this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreThe current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show More