Abstract There are many uncertainty sources that may affect the statistical reasoning. However, traditional methods can not deal with all kinds of uncertainty sources, which has led many researchers to develop traditional methods. Studies still exist to this day, making hypotheses to create a common understanding for the purpose of reaching new solutions through the use of new methods that combine traditional and modern theories of sources of uncertainty The aim of current study was to develop the adaptive fuzzy linear regression model in the case of using inaccurate data as the source of uncertainty. Specifically, the model proposed by [1]. However, instead of what dominant in fuzzy linear regression analysis, we used a new born method that uses the positions and entropy to fuzzification instead membership function. As for the comparison method we used the mean absolute difference as performance's accuracy measures. The results of this study showed the efficiency of the use of the position and the entropy function to describe the fuzzy numbers over the use of the membership functions. The results also indicated that the develop model has the best results compared to the model adapted using the membershop functions in [1].
KE Sharquie, AA Al-Nuaimy, WJ Kadhum, Saudi medical journal, 2006 - Cited by 3
Polyethersulfone (PES) ultrafiltration membrane blending NaX zeolite crystals as a hydrophilic additive was examined for zinc (II) and lead ions Pb (II) removal from aqueous solutions. The effect of NaX zeolite content on the permeation flux and removal efficiency was studied. The results showed that adding zeolite to the polymer matrix enhanced the permeation flux. The permeation flux of all the zeolite/PES matrix membranes was higher than the pristine membrane. No significant improvement was observed in the removal of Zn (II) ions using all prepared membranes as the removal percentage did not raise above 29.2%. However, the removal percentage of Pb (II) ions was enhanced to 97% using a membrane containing 0.9%wt. zeolite. Also, it was
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreAbstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show More