Fusidic acid (FA) is a well-known pharmaceutical antibiotic used to treat dermal infections. This experiment aimed for developing a standardized HPLC protocol to determine the accurate concentration of fusidic acid in both non-ionic and cationic nano-emulsion based gels. For this purpose, a simple, precise, accurate approach was developed. A column with reversed-phase C18 (250 mm x 4.6 mm ID x 5 m) was utilized for the separation process. The main constituents of the HPLC mobile phase were composed of water: acetonitrile (1: 4); adjusted at pH 3.3. The flow rate was 1.0 mL/minute. The optimized wavelength was selected at 235 nm. This approach achieved strong linearity for alcoholic solutions of FA when loaded at a serial concentrati
... Show MoreReservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreSamarium(III) ions react with (l-2(2-benzoinidazolyl-azo)-2-hydroxy-3-naphthoic acid in basic medium (pH = 8.0) forms a red-orange complex at A.max (550nm). The complex was found to be stable for at least 48 hrs. at the given pH. The apparent molar absorptivity is 7776.77 L.mol-1.Cm-1 and a linear calibration curve is obtained in the range (0.639x 10-5M - 6.350x 10 -5M). The stoichiometry of complex was confirmed by using mole ratio method which indicated that ratio of reagent to metal is 3:1. The effects of the presence of different cations and anions as interferences in the determination of samarium(III) under the given conditions were investigated
The new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu2+ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pHex=9), optimum concentration was 40?g/5mLCu2+ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu2+: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and dis
... Show MoreImproving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes perf
... Show MoreZeolite Y nanoparticles were synthesized by sol - gel method. Dffirent samples using two silica sources were prepared.
Sodium metasilicate (Na2SiO3) (48% silica) and silicic acid silica (H2SiO3) (75% silica) were employed as silica
source and aluminum nitrate (Al(NO3)3.9H2O) was the aluminum source with tetrapropylammonium hydroxide
(TPAOH) as templating agent.
The synihesized-samples were characterized by X-ray diffraction, showed the requirement of diffirent aging time for
complete crystallization to be achieved. Transmission Electronic Microscope (TEM) images, showed the particles were
in the same range of 30 - 75 nm. FT-IR spectroscory, showed the synthesized samples having the zeolite Y crystal
properties. The i
Green synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreOptical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
A new simultaneous spectrophotometric-kinetic method was developed to determine phenylephrine (PHEN) and tetracycline (TETR) via H-point standard addition method (HPSAM). The proposed procedures rely on the measurements of the difference in the rate of charge-transfer (CT) reaction between each of PHEN and TETR as electron donors with p-Bromanil (p-Br) as an electron acceptor. Different experimental factors which affect the extent of the complex formation were investigated by monitoring the value of absorbance at 446 nm. Time pair of 50 -100 sec was selected and employed, among different examined pairs since it results in the highest accuracy for HPSAM-plot. Linear calibration graphs in the concentration ranges of 10.0-40.0 and 10.0–50.0
... Show More