Preferred Language
Articles
/
VBhwMpUBVTCNdQwCwSoD
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>

Scopus Crossref
View Publication
Publication Date
Sat Jan 12 2019
Journal Name
Journal Of The College Of Education For Women
Preparation of A Measurement to the Affirmative Behavior for the Students at the University of Baghdad
...Show More Authors

Self-Assertion is the individual ability to express any emotion well, except the anxiety. The decrease of the individuals asserting behavior makes them face many difficulties that prevent their social adjustment. Moreover it reflexes many negative behavioral and physical cases. The individual, who fails to express his or her negative feelings in required situations, feels with dissatisfaction, loneliness, depression, anxiety, social anxiety, conflict, and psychological disorder.
Accordingly, the importance of this study is represented in studying the self-assertion and studying the university students who reflect the strength of society.
The following are the two aims of the study:
1. Construct an asserting behavior scale.
2.

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 21 2015
Journal Name
Integrated Journal Of Engineering Research And Technology
A HYBRID CUCKOO SEARCH AND BACK-PROPAGATION ALGORITHMS WITH DYNAMIC LEARNING RATE TO SPEED UP THE CONVERGENCE (SUBPL) ALGORITHM
...Show More Authors

BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.

Publication Date
Tue Jan 01 2019
Journal Name
Advances On Computational Intelligence In Energy
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
...Show More Authors

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (2)
Scopus
Publication Date
Thu Nov 21 2019
Journal Name
Al-kindy College Medical Journal
The The Role of Breast Sonography and Ductography in the Evaluation of Different Causes of the Nipple Discharge
...Show More Authors

ABSTRACT

 

Background : The aim of this work is to assess the role of breast sonography  and ductography in the evaluation of different causes of nipple discharge.

Methods :  The study will be carried out on twenty-five female patients referred to the Radiodiagnosis department at Alexandria Main University Hospital presenting with nipple discharge.

They were divided into two groups:

Group I include 10 patients (40%) with surgically significant nipple discharge who were the patients with unilateral, uniorificial surgically significant colour type nipple discharge .They were investigated by mammography, sonography, and ductography.

Group II include 15 patients

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (300)
Crossref (271)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (3)
Scopus Crossref