<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>
This research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m3. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the
Background: Diabetes mellitus a major factor that has adverse effects on the vascular system and the heart. It causes an increase in cardiac muscle thickness, resulting in decreased compliance and increased peripheral arterial stiffness. This study aims to assess the left ventricular mass (LVM) and left ventricular hemodynamic changes in diabetic patients measured by Doppler echocardiography. Patients and Methods: The study included 50 diabetic patients ranging in age between 25 and 80 years, (mean age: 54.1 ± 15.10, 19 males, 31 females) and 50 healthy subjects, aged 25 to 80 years (mean age: 48.52 ± 14.45, 11 males, 39 females). Doppler echocardiography was used to assess left ventricular function. The measurements included
... Show MoreObjective: Detection the presumptive prevalence of
silent celiac disease in patients with type 1 diabetes
mellitus with determination of which gender more
likely to be affected.
Methods: One hundred twenty asymptomatic patients
[75 male , 45 female] with type 1 diabetes mellitus
with mean age ± SD of 11.25 ± 2.85 year where
included in the study . All subjects were serologically
screened for the presence of anti-tissue transglutaminase
IgA antibodies (anti-tTG antibodies) by Enzyme-
Linked Immunosorbent Assay (ELISA) & total IgA
was also measured for all using radial
immunodiffusion plate . Anti-tissue transglutaminase
IgG was selectively done for patients who were
expressing negative anti-
Objective: Detection the presumptive prevalence of silent celiac disease in patients with type 1 diabetes mellitus with determination of which gender more likely to be affected.
Methods: One hundred twenty asymptomatic patients [75 male , 45 female] with type 1 diabetes mellitus with mean age ± SD of 11.25 ± 2.85 year where included in the study . All subjects were serologically screened for the presence of anti-tissue transglutaminase IgA antibodies (anti-tTG antibodies) by Enzyme-Linked Immunosorbent Assay (ELISA) & total IgA was also measured for all using radial immunodiffusion plate . Anti-tissue transglutaminase IgG was selectively done for patients who were expressing negative anti-tissue transglutaminase IgA with low tot
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreThe research shows the importance of orientation towards the formulation of the green strategy and its effect in determining the behavior of the green municipal institution in Babel governorate. The research highlighted the formulation of the green strategy as an important variable, especially today, the trend towards protecting the environment and minimizing the damage resulting from the delivery of services, and through it also the type of green behavior or performance adopted by the municipal institution and the emergence of the need for a strategy that is not harmful to the environment. The research took the sample intentionally comprehensive size of 222 personnel of municipal institutions and some formations concerned with t
... Show More