Background: Beta thalassemia major (β-TM) is an inheritable condition with many complications, especially in children. The blood-borne viral infection was proposed as a risk factor due to the recurrent blood transfusion regimen (hemotherapy) as human parvovirus B19 (B19V). Objective: This study investigated the B19V seroprevalence, DNA presence, B19V viral load, and B19V genotypes in β-TM patients and blood donors. Methods: This is a cross-sectional study incorporating 180 subjects, segregated into three distinct groups each of 60 patients, namely control, β-TM, and β-TM infected with Hepatitis C Virus (HCV). For the B19V prevalence in the studied group, the ELISA technique and real-time PCR were used. The genotyping was followed by the resultant sequence. Results: Both B19V IgM and IgG antibody positivity rates are higher among β-TM patients compared to controls. The B19V IgM (35%) and B19V IgG (21.67%) antibodies positivity in β-TM patients compared to 23.3% and 18.33% positivity in the controls was significantly observed. The prevalence of B19V was (8.3%), and the viral copy number in β-TM patients ranged from ≥104– 106 copies/ml than in controls. The B19V genotype 1 subtype a was the only genotype according to the VP1-VP2 region (288 pb) in this study. Conclusions: The prevalence of B19V in patients may be higher than in controls. B19V screening in high-risk groups, such as blood donors, may considerably reduce the prevalence of B19V.
Dam break is series phenomenon that can result in fatal consequences and loss of properties. Unfortunately, the observed consequences can only be available after the dam breaks. Therefore, it is important to anticipate what will happen prior to dam break to issue suitable warning and locate the possible risk areas. This study attempts to simulate the case of dam break in Blue Nile at Roseires dam and see its consequences downstream. Roseires dam lies at a distance of 630 km south of Khartoum, Sennar dam lies at about 260 km downstream of Roseires dam. In this study hydraulic model is developed based of Hydraulic Engineering Centre (HEC), River Analysis System (RAS), and HEC- RAS. The HEC-RAS based model is calibrated and validated usi
... Show MoreAn approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
The optimum conditions for the production of neutral protease from local strain Aspergillus niger var carbonarius by solid – state fermentation system (Wheat bran) moisted with 0.2 M phosphate buffer (PH7.0) . the hydration ratio was 1:5 (V:W) . the concentration of inoculum was 1×106 spores per 10 gram of solid materials , initial P H 6.5 and 96 hours of incubation period at 30? C .the enzyme activity was 1300 unit / ml and specific activity was 1550 unit / mg protein .
Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MoreKA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show More