Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the complex at 800 °C. These nanoparticles and other metal oxides are highly valued in various industries for their optical, magnetic, and electrical properties. The experiment highlighted the synthesis of CuO nanoparticles through the thermal breakdown of copper(II) ions, starting with copper acetate, which reacted with the ligand to form the complex. The characterization results of CuO nanoparticles reveal a highly pure crystalline structure with an average size of 70–90 nm.
The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
Transition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreFullerene nanotube was synthesized in this research by pyrolysis of plastic waste Polypropylene (PP) at 1000 ° C for two hours in a closed reactor made from stainless steel using molybdenum oxide (MoO3) as a catalyst and nitrogen gas. The resultant carbon was purified and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of C60 nanotubes were observed with the Field emission scanning electron microscopy (FESEM). The carbon is evenly spread and has the highest concentration from SEM-EDX characterization. The result of XRD and FESEM shows that C60 nanotubes are present in Nano figures, synthesized at 1000 ° C and with pyrolysis tempera
... Show MoreWere analyzed curved optical fates Almarchih absolute colony of the binary type, the Great Palmstqrh using mathematical relationships derived for that and that gave us the results closer to the results of the observed spectral Great Colonial
A group of amine derivatives [4-aminobenzenesulfonamide derivatives, 2-aminopyridine and 2-aminothiazole] incorporated to α-carbon of diclofenac a well known non-steroidal anti-inflammatory drug (NSAID) to increase bulkiness were designed and synthesized for evaluation as a potential anti-inflammatory agents with expected COX-2 selectivity. In vivo acute anti-inflammatory activity of the selected final compounds (9, 12 and 13) was evaluated in rats using egg-white induced edema model of inflammation in a dose equivalent to (3 mg/Kg) of diclofenac sodium. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50
... Show MoreThe purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show MoreThis research involved synthesis of new β-Lactam derivative from Azo compound[4-amino-N-(pyrimidine-2-yl)-3-(pyrimidine-2-yldiazenyl) benzene sulfonamide] (S1) record previously by many steps. Starting conversion the free amino group in an azo comp. to chloro acetamide derivative(S2), then reacted it with urea to give the oxazole ring derivative (S3) that which containing free amino group. The condensation reaction between the amino group and P-bromobenzaldehyde to produce Shiff base (B14). Finally staudinger's cyclo addition reaction go run between the Shiff base derivative (B14) and chloro acetyl chloride in the presence of tri ethyl amine (Et3N) as Base catalyst and dioxane a
... Show MoreFlexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show More