The use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This paper presents a numerical study that investigates the fire behavior of thermally insulated RC beams flexurally strengthened with NSM-CFRP strips and subjected to fire exposure according to the ISO 834 standard. The numerical study considered three-dimensional finite element models in the ABAQUS software that have been developed to simulate and predict the performance (thermal and structural response) of fire endurance tests on strengthened, uninsulated strengthened, and thermally insulated beams strengthened with NSM-CFRP strips, which were exposed to fire and had different fire insulation schemes. The insulation used was plaster from local material with a thickness range of 25 to 50mm. The variation of the thermal and mechanical properties with the temperature of the constituent materials was considered. All beams' mechanical and thermal responses were adequately simulated using numerical models. The results of the numerical simulations were in good agreement with the experimental data. The fire behavior of the NSM-CFRP strengthened RC beams was examined and particularly the efficiency of the NSM strengthening system during the fire. The behavior in the fire of the NSM-CFRP strengthening system on the RC beams thermally protected with different fire insulation schemes was assessed. Finally, the effectiveness of fire insulation was studied.
Student performance may influence by several factors in all his study levels such as primary school, intermediate school and even in his college; some of these factors are psychological factors, social factors, and the factors which correlate with student environment.
In this paper we study some of these factors to discover their influence by using canonical correlation analysis to analyze the data. Many conclusions are discovered to help who focuses student performance or to make it pest in future.
The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreThis paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreA composite section is made up of a concrete slab attached to a steel beam by means of shear connectors. Under positive and negative bending moment, part of the slab will act as a flange of the beam, resisting the longitudinal compression or tension force. When the spacing between girders becomes large, it is evident that the simple beam theory does not strictly apply because the longitudinal stress in the flange will vary with distance from the girder web, the flange being more highly stressed over the web than in the extremities. This phenomenon is termed "shear lag". In this paper, a nonlinear three-dimensional finite element analysis is employed to evaluate and determine the actual effective slab width of the composite steel-concrete
... Show MoreCoaxial (wire-cylinder) electrodes arrangements are widely used for electrostatic deposition of dust particles in flue gases, when a high voltage is applied to electrodes immersed in air and provide a strongly non-uniform electric field. The efficiency of electrostatic filters mainly depends on the value of the applied voltage and the distribution of the electric field. In this work, a two-dimensional computer simulation was constructed to study the effect of different applied voltages (20, 22, 25, 26, 28, 30 kV) on the inner electrode and their effect on the efficiency of the electrostatic precipitator. Finite Element Method (FEM) and COMSOL Multiphysics software were used to simulate the cross section of a wire cylinder. The results sh
... Show MoreNumerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (