Objective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-AgNPs-DOX-FA were found to inhibit cell proliferation in the AMJ13 cell line, according to the findings. The anti-proliferative impact of these chemicals was attributed to cell death and activation of apoptosis, as evidenced by dual staining with acridine orange and Ethidium bromide. The presence of high fluorescent signals specific for cellular uptakes of CS-AgNPs-DOX-FA into the cell line's cytoplasm was confirmed. Conclusion: According to the findings of this study, CS-AgNPs-DOX-FA has a lot of promise to be used as an anticancer delivery system. The findings imply that this conjugate should be researched further for potential use as anticancer drug.
Metal and metal oxide NPs have shown to be perfectly synthesized by using plant extracts with high efficiency, low cost and low toxicity. Our goal was to synthesize ZnO NPs by using an extract of pomegranate seeds and investigate the anticorrosion, antimicrobial and antioxidant properties of the synthesized ZnO NPs. The results have shown that the use of pomegranate in the green synthesis of ZnO NPs gave a good yield, with a low cost and non-toxic approach. The electrophoretic deposition (EPD) was used to coat stainless steel (S.S) by synthesized ZnO NPs in an alcoholic solution at room temperature producing a good coating against corrosion. The corrosion properties were investigated in a saline solution and a temperature range of (293–32
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreMany faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when add
... Show MoreBismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray p
... Show MoreObjective: Using green chemistry, an effective, inexpensive, and environmentally safe method, sulfur nanoparticles with specific properties can be prepared and used in nanotechnology. This research aimed to prepare sulfur nanoparticles from chilli pepper extract and determine their effectiveness against colon cancer. Method: Chilli pepper extract obtained from local markets was treated with aqueous sodium thiosulfate (Na2S2O7.5H2O). After mixing, it was continuously stirred, heated, and filtered. NaBH4 was then added, resulting in a yellow precipitate. The precipitate was centrifuged, purified, and dried at 250°C. Results: Standardised tests such as UV-Vis, XRD, SEM, TEM, AFM, and EDX were used, resulting in sulfur nanoparticles with an av
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreUsing an environmentally friendly chemical process, a novel nanocomposite consisting of reduced graphene oxide (rGO) and silver(I) oxide (Ag2O) nanoparticles was successfully synthesized in this work, and its optical properties along with photoelectric performance were investigated. Ag2O is a narrow-bandgap p-type semiconductor with strong visible light response but exhibits poor carrier separation and structural instability during exposure to radiation. In order to overcome shortcomings encountered with Ag2O, rGO was used as a conductive support to produce rGO@Ag2O nanocomposites with improved electronic interactions. Various characterization tests, including energy-dispersive X-ray spectroscopy (EDXS), field emission scanning electron mic
... Show More