The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in permeability prediction and compared its results with the flow zone indicator methods for a carbonate heterogeneous Iraqi formation. The methodology of the research can be Summarized by permeability was estimated by using two methods: Flow zone indicator and Artificial intelligence, two reservoir models are built, where the difference between them is in permeability method estimation, and the simulation run will be conducted on both of the models, and the permeability estimation methods will be examined by comparing their effect on the model history matching. The results showed that the model with permeability predicted by using artificial intelligence matched the observed data for different reservoir responses more accurately than the model with permeability predicted by the flow zone indicator method. That conclusion is represented by good matching between observed data and simulated results for all reservoir responses such for the artificial intelligence model than the flow zone indicator model.
The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreIn this research, we exclude starch indicator preparation,that is used in official phenol assay method. The liberated iodine, in presence of chloroform, was acting as indicator and titrated with sodium thiosulfate until getting a sharp colorless end point. Similarly, starch was cancelled during both blank and standardization of bromine water solution experiments needed in phenol assay. The results obtained were the same volumes and weights as that achieved using starch with just about 0.03% difference in sample procedure. Finally, this work will enable us to save time, effort, fuel and materials spended in laboratory.
Key word:- Phenol, assay, starch indicator
... Show MoreThe possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
This study presents a rapid, sensitive, and straightforward approach to measure chlorpheniramine maleate (CPM) by using turbidity CFIA. The method involves CPM reacting with sodium nitroprusside (Nitropress) to produce a pale white precipitate. The NAG-SSP-5S1D analyzer was used to measure turbidity at 0°–180° angle to detect the attenuation of incident light as a result of collision on the surfaces of the precipitate particles. The linear range of CPM measurements was between 0.008 and 11 m.mol/L, with correlation coefficient of 0.9983 and R2% = 99.65. The limit of detection was determined to be 0.0328 µg/sample from the lowest concentration in the calibration curve, and the repeatability of the method (RSD%) was less than 0.4% (n = 6
... Show MoreIn this paper to isolate and study the properties of the cyclooxygenase-2 (EC: 1.14.99.1) enzyme in the blood of a patient suffering from rheumatoid arthritis and study the effect of natural products of the Soapwort on the activity of purified enzyme. The study involves taking 30 ml of blood from an adult woman 40 years old, who suffers from rheumatoid arthritis disease for 13 years. Serum is separated and subjected to a series of purification processes including: precipitation by ammonium sulfate, filtration by centrifugation radiator, dialysis in presence of ammonium bicarbonate, separation using the technology of ion exchange, lipholization and then estimating approximate molecular weight of the enzyme using gel filtration techni
... Show MoreComputations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model d
... Show MoreThe modern industrial projects and complexes that adopt ecological systems, and renewable, clean and environmentally friendly energy, not only contribute to the development of an environmentally friendly production method but can achieve long-term economic and industrial development by preserving environmental resources. The ecological industrial systems and modern industrial technologies are the ideal solutions to rationalize excessive use and preserve the elements of the environment and natural resources, the most important of which is the existence of several methods and programs for the development of industrial sites, and there is important to adopt mechanisms and programs to sol
In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreIn this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show More