The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in permeability prediction and compared its results with the flow zone indicator methods for a carbonate heterogeneous Iraqi formation. The methodology of the research can be Summarized by permeability was estimated by using two methods: Flow zone indicator and Artificial intelligence, two reservoir models are built, where the difference between them is in permeability method estimation, and the simulation run will be conducted on both of the models, and the permeability estimation methods will be examined by comparing their effect on the model history matching. The results showed that the model with permeability predicted by using artificial intelligence matched the observed data for different reservoir responses more accurately than the model with permeability predicted by the flow zone indicator method. That conclusion is represented by good matching between observed data and simulated results for all reservoir responses such for the artificial intelligence model than the flow zone indicator model.
We demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
ABSTRACT
The research aims to analyze the value chain of dairy products in Iraq (Abu Ghraib/Study Case) factories for the year 2022, where value chain rings are identified to discuss and track the most important determinants and problems in the value chain rings of dairy products and their basic and secondary activities, as well as calculate the value added of the products by subtracting the total revenues of products from their variable costs. Research data were collected for the period 2022. Preliminary information and data from its field sources and personal interviews were collected through a questionnaire prepa
Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show MoreThe present paper deals with experimental investigation of the performance of air cooled split air conditioner, with evaporative water mist pre cooling to increase the cooling capacity and reduce the consumption power under hot and dry climate. This investigation considers how the performance can be enhanced by using water mist to pre-cool ambient air entering the condensers by adiabatic cooling process which depends on the ambient air wet bulb temperature; as well the condensing temperature and condensing pressure will be decreased accordingly. So the cooling capacity would be increased and consumption power would be decreased, consequently the energy ratio, EER would be improved. The performance of air cooled air conditioner with water
... Show MoreThis study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.