This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substantial improvement of 59.90% is observed for data files sized at 1500000kb. Partitioning larger files notably reduces encryption time, while smaller files experience marginal benefits. Certain file types benefit from both strategies. Evaluation metrics include encryption execution time and throughput, consistently demonstrating ERC5's superiority over the original RC5. Moreover, ERC5 exhibits reduced power consumption and heightened throughput, highlighting its multifaceted benefits in resource-constrained environments. ERC5 is developed and tested on various file types and sizes to evaluate encryption speed, power consumption, and throughput. ERC5 significantly improves encryption speed across different file types and sizes, with notable gains for audio, image, and large data files. While partitioning smaller files only slightly improves encryption time, larger files partitioning yields faster results. Future research could explore ERC5 optimizations for different computing environments, its integration into real-time encryption scenarios, and its impact on other cryptographic operations and security protocols.
This research theme of the pressures of work , which is one of the important topics in order to recognize the reality of( influencing the pressures of work in the performance of employees in the General Company for Vegetable Oil Industry in Baghdad )through the statement of the existence of the correlation and influence whether or not the statement of the strength of this relationship and its impact in the case of its existence has been provided as part of my Search for variables and their removal in front of the Sub- scientific aspect has been the distribution of the questionnaire on a sample of( 62) people working in the company Mint distributors on several sections where.
Formed resolution of two sets
... Show MoreThe need for renewable energy sources is higher than ever due to rising global warming, climate change, and ozone depletion. For refrigeration and air conditioning applications, adsorption refrigeration systems are viable alternatives cooling techniques. This study is a topic and part of the M.Sc. thesis. A field solar-powered ice maker unit was created, studied, tested, and evaluated on the 13th and 30th of May, 2022. Activated carbon and methanol pair was used to set up a refrigeration system in Baghdad (Al Dora). Experimental tests were carried out outdoors to determine the coefficient of performance COP and specific cooling power SCP of the system. The results showed that the lowest temperature
... Show MoreSolar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreDuring the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show More