This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
Abstract:
The phenomenon of financial failure is one of the phenomena that requires special attention and in-depth study due to its significant impact on various parties, whether they are internal or external and those who benefit from financial performance reports. With the increase in cases of bankruptcy and default facing companies and banks, interest has increased in understanding the reasons that led to this financial failure. This growing interest should be a reason to develop models and analytical methods that help in the early detection of this increasing phenomenon in recent year . The research examines the use of
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the
... Show MoreReactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the
... Show MoreThis study presents a comprehensive set of laboratory works for the examined soil layers extracted from Baghdad city (specifically from Alkadhimya, Alaitaifiya, and Alhurriya) to illustrate their engineering properties. The researchers have adopted the unified soil classification system for soil classification purposes. Also, the direct shear test was performed for soil samples with various degrees of saturation (0%, 25%, 50%, 75%, and 100%). The test results have shown a significant reduction in cohesion property with higher moisture content within soil samples. Also, a noticeable reduction in angle of internal friction value has occurred with such changes. Furthermore, it has been found that the bearing capacity of unsaturated soi
... Show MoreBackground: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these
... Show MoreThe research aims to conduct a comparative study between the events (800) m and (1500) m track in the types of muscular strength and to identify the differences between them among Iraqi sports club players. The sample represented the players participating in the Iraqi Athletics Championship for the period between (02/11/2023) and (04 /11/2023), and their number was (16) players (8) for each event, as the selection was made intentionally. The researchers used the descriptive approach to achieve the goal of the research and used the statistical package (SPSS) to process the data statistically. According to the results collected, it was found that there was superiority among the intermediate track players (800) m in explosive power and the s
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show More