This review discusses precision agriculture techniques that help reduce the effects of soil degradation and improve soil health, based on an analysis of studies published in scientific databases such as Web of Science, Scopus, IEEE Xplore, Google Scholar, and ScienceDirect, with an emphasis on recent field research. The methodology included a qualitative analysis of case studies and application experiments in different areas to evaluate the impact of technologies such as controlled traffic farming (CTF), mechanized guidance (MG), precision fertilization (PF), precision irrigation (PI), conservation tillage (CT), and precision tillage (PT). Research results showed, CT to maintain soil structure and reduce organic matter loss increases soil fertility in the long run. MG systems increase the efficiency of agricultural resource use and reduce field congestion, which improves soil health. However, by reducing unnecessary movement of agricultural equipment, CTF reduces soil degradation. In addition, PI and PF provide nutrients and water to plants in a balanced manner, which improves plant health and reduces environmental pollution; this, in turn, reduces soil degradation.
Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreGenerally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre
... Show MoreThe present study took up the different ways to cultivate the species Epipremnum aureum by two habitat water and soil and comber the anatomical features of the root, stem, and leaf. The results showed amazing significant anatomical features to the ecosystem. The root and stem anatomy showing decrease in all characters that studied but the leaf anatomy showing increase of palisade, spongy tissue thickness, midrib thickness, number of vessels in the xylem also the long and width of stomata of the soilless plants than soil ones. The upper epidermis empty from the stomata for the two treatment and the stoma diffuse in the lower epidermis, the type of it paracytic type. Also the total of flavonoids in the plant that were growth in soil reached 1
... Show MoreThis research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
It was found that there was a significant correlation between all tests of the mechanical and electrical activity of the heart (systolic force FC, stroke volume SV, end-diastolic volume, EF volume, and left ventricular volume during diastole LVDD) with the test of the oxygen-phosphating energy system (Markaria). - As safe (Margaria-Kalamen( It was found that there is a significant correlation between all tests of the mechanical and electrical activity of the heart (myocardial systolic force FC, stroke volume SV, end-diastolic volume EDV, and the percentage of heart pumpingEF blood, and left ventricular volume during diastole (LVDD) with the Lactational Oxygen Energy System Test (Wingate Test 30 Second(
Introduction: All-ceramic crowns are widely used in prosthodontics and cosmetic dentistry due to their good esthetic and proper physical properties. Chipping of ceramic is one of the most common post-insertion complications, that can be fixed either extraoral or intraorally. The latter is time time-effective alternative, less traumatic, and low-cost. A newer objective method of laser is a surface modification of ceramics to increase surface roughness. The aim of this study is to provide a review of Er,Cr;YSGG (2960nm) in intraoral repair and shear bond strength (SBS). Method: A thorough search considering Google Scholar and PubMed published data and ten articles found wh
... Show MoreVarious industrial applications include the dyeing of textiles, paper, leather, and food products, as well as the cosmetics industry. Physic-chemical methods are required to breakdown dyes because they are known to be harmful and persistent in the environment. Many companies' treated effluents contain small amounts of dyes. When it comes to removing dye from wastewater, adsorption has verified to be aneconomical alternative to more traditional treatment procedures. It's important to degrade color impurities in industrial effluents since they constitute a serious health and environmental concern. One way that's been tried is using clay minerals as an adsorbent. Using adsorption for removing
... Show More