Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
Electronic properties such as density of state, energy gap, HOMO (the highest occupied molecular orbital) level, LUMO (the lowest unoccupied molecular orbital) level and density of bonds, as well as spectroscopic properties like infrared (IR), Raman scattering, force constant, and reduced masses for coronene C24, reduced graphene oxide (rGO) C24O5and interaction between C24O5and NO2gas molecules were investigated. Density functional theory (DFT) with the exchange hybrid function B3LYP with 6-311G** basis sets through the Gaussian 09 W software program was used to do these calculations. Gaussian view 05 was em
... Show MoreGreen synthesis is depending on preparation of nano composited SiO2/V2O5 by using the modified sol-gel method depending on rice husk ash as a source for the extraction of silica gel and the product powder of nano composited SiO2/V2O5 characterization by many techniques such as X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and N2 adsorptions/desorption isotherms (BET). This study also includs the biological effectiveness of SiO2/V2O5 and its effect on inhibiting bacterial growth after the prepared nanomaterial was applied to wound dressings, which gave a promising result for its use as
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
The study is about Maxwell , three dimensions of non – Newtonian fluid. Method of th Homotopy applied to analysis mass transfer and heat with thermophoresis effects. (Sc), Impact of therrmophoretic (𝜏), magnetic (M), Biot (γ), radiation (Rd),Schmidt Prandtle (Pr) parameters and ratio parameter(β) on concentration, temperature are offered in the paper.
Almost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreThe effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry
... Show MoreA polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper