Background: The adverse effects of drugs can damage various organs, especially the liver, leading to a hepatic injury known as hepatotoxicity. Drug-induced liver injury (DILI) is challenging nowadays because of the large number of different drugs used, one of the offending medications that cause DILI is carbamazepine (CBZ), since the liver has an array of functions including detoxification, it will deal with several damages caused by exposure to the drugs. Objective: investigate the effect of (CBZ) 20mg/kg/day on female mice liver after 14 and 30 days of treatment on morphological and histopathological levels. Materials and Methods: 20mg/kg/day of CBZ was administered orally for (14) days to (10) female mice, another (10) mice were taking the same concentration for 30 days, and control groups were administered tap water. Results: The findings showed that CBZ can cause liver enlargement, changes in liver appearance, distortion in Glisson’s capsule, cytologic alterations, hepatocytes hypertrophy, ballooning degeneration, pyknosis, karyolysis, karyomegaly, sinusoids dilation, increase in the number and sizes of Kupffer cells, fibrosis, glycogen depletion, and cirrhosis. Conclusions These findings have shown that carbamazepine (CBZ) can cause hepatotoxicity that can manifest into morphological and histopathological changes.
In this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitance semiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
In this research ,Undoped Nio and 1%Li doped Nio thin films were deposited utilizing chemical spray pyrolysis on the glass substrates heated (450C). The effects of non-thermal plasma on the structural and optical properties were studied. XRD measurement shows that Nio and Nio:1%Li films were found to be polycrystalline and have cubic structure with a preferred orientation (111). Decreased crystal size after exposure especially at (7) sec. AFM data indicate that the surface roughness average and (RMS) values of the prepared doped films are increasing after exposure to plasma, the transmittance increases after doped samples exposure to plasma, it was found that the energy gap value decreased when doped samples exposure to plasma, also, thickn
... Show MoreAs the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetric
... Show MoreIn this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien
... Show MoreIt is the grace of God and his grace that he accepts repentance for his slaves, forgives their bad deeds in return for their misfortune, or offers them a good deed, but pardons many of them for free. Therefore, it is not long for God Almighty to forgive His mercy for many of His slaves and bring them to Paradise with no punishment or punishment, even if they have committed some sins, because of the multitude of their favorable navigational disadvantages, or even without gratitude thanks to him and him. With all this, some have overlooked the old and new on these things and amazed at the hadeeth ((God may have seen the people of the full moon and said do what you want, I have forgiven you)). Therefore, the scholars tried to answer some of
... Show MoreIn this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitancesemiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
In this research, titanium dioxide nanoparticles (TiO2 NPs) were prepared through the sol-gel process at an acidic medium (pH3).TiO2 nanoparticles were prepared from titanium trichloride (TiCl3) as a precursor with Ammonium hydroxide (NH4OH) with 1:3 ratio at 50 °C. The resulting gel was dried at 70 °C to obtain the Nanocrystalline powder. The powder from the drying process was treated thermally at temperatures 500 °C and 700 °C. The crystalline structure, surface morphology, and particle size were studied by using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscope (SEM). The results showed (anatase) phase of titanium dioxide with the average grain size
... Show More