Efficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and the overall efficiency indicated a positive efficiency of the STP within the order BOD > COD > TSS > chloride. The results revealed that the effluent quality index (EQI) lied under a good water category for both effluent disposal and irrigation use. The multiple linear regression model (MLR) was used for the prediction of EQI and the results provided good estimates for the EQI data sets with a high coefficient of determination (R2=98%). From this analysis, EQI is highly significantly interrelated with TSS, BOD5, and COD within the values 88.9%, 78.6%, and 76.3% respectively. The artificial neural network (ANN) model was developed to predict the effluent quality index based on the selected sewage characteristics. Results provided good estimates for the EQI data sets with a high coefficient of determination (R2=99.8%) and lower relative error and TSS was more effective on the EQI model other than parameters with the relative importance 47.3%. So, the MLR and ANN models were found to provide an effective tool in efficient predicting EQI that can be used effectively to monitor effluent parameters and describe the suitability of treated sewage to quality achieved according to Iraqi quality standards (IQS) for effluent disposal and Food Agriculture Organization (FAO) standards for irrigation purposes.
MPEG-DASH is an adaptive bitrate streaming technology that divides video content into small HTTP-objects file segments with different bitrates. With live UHD video streaming latency is the most important problem. In this paper, creating a low-delay streaming system using HTTP 2.0. Based on the network condition the proposed system adaptively determine the bitrate of segments. The video is coded using a layered H.265/HEVC compression standard, then is tested to investigate the relationship between video quality and bitrate for various HEVC parameters and video motion at each layer/resolution. The system architecture includes encoder/decoder configurations and how to embedded the adaptive video streaming. The encoder includes compression besi
... Show MoreIn recent years, the number of applications utilizing mobile wireless sensor networks (WSNs) has increased, with the intent of localization for the purposes of monitoring and obtaining data from hazardous areas. Location of the event is very critical in WSN, as sensing data is almost meaningless without the location information. In this paper, two Monte Carlo based localization schemes termed MCL and MSL* are studied. MCL obtains its location through anchor nodes whereas MSL* uses both anchor nodes and normal nodes. The use of normal nodes would increase accuracy and reduce dependency on anchor nodes, but increases communication costs. For this reason, we introduce a new approach called low communication cost schemes to reduce communication
... Show MoreThe ongoing research to improve the clinical outcome of titanium implants has resulted in the implementation of multiple approaches to deliver osteogenic growth factors accelerating and sustaining osseointegration. Here we show the presentation of human bone morphogenetic protein 7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate) (PEA). We have previously shown that PEA promotes fibronectin organization into nanonetworks exposing integrin- and growth-factor-binding domains, allowing a synergistic interaction at the integrin/growth factor receptor level. Here, titanium discs were coated with PEA and fibronectin and then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells were used to investigate cellular resp
... Show Moreالمستخلص
يعد تقييم اداء العاملين احد اهم الركائز الاساسية التي يتوقف عليها نجاح أي منظمة تسعى بأن تتطور وتتميز بأنشطتها واداءها وبالأخص المنظمات التي لها خصوصية في عملها كالأجهزة الرقابية التي تعتمد في اداء انشطتها ومسؤولياتها على كفاءة مواردها البشرية, ومن هذا المنطلق يهدف هذا البحث الى تصميم انموذج ثلاثي المحاور (المؤهلات والقدرات، الاداء والانجاز، التعاون والالتزام الوظيفي) ثُماني المستويات
... Show MoreThis work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show More