Preferred Language
Articles
/
TxdGro0BVTCNdQwCgRhw
Real time handwriting recognition system using CNN algorithms
...Show More Authors

Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.

Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Science
Theoretical Study of The Electromagnetic Structure of Boron Isotopes Using Local Scale Transformation Technique
...Show More Authors

View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Advanced Research In Dynamical And Control Systems
The impact of node density over routing protocols in manet by using NS-3
...Show More Authors

Scopus (5)
Scopus
Publication Date
Tue Jan 05 2016
Journal Name
Iraqi Journal Of Science
Local Study of blaCTX-M genes detection in Proteus spp. by using PCR technique
...Show More Authors

n this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and de

... Show More
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Sun Dec 02 2018
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Improvement of Domestic Wastewater Treated Effluent from Sequencing Batch Reactor Using Slow Sand Filtration
...Show More Authors

The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended

... Show More
Publication Date
Thu Dec 01 2022
Journal Name
Structural Concrete
Enhancement of RC T‐beams toughness using laced stirrups reinforcement for blast response predictions
...Show More Authors

Publication Date
Fri Jun 15 2018
Journal Name
Journal Of Baghdad College Of Dentistry
Relation of Gonial Angle Index to osteoporosis and age using CBCT in female subjects
...Show More Authors

background: osteoporosis is a metabolic bone disease that affects women more than men, it is characterized by generalizes reduction of bone mineral density (BMD) leaving a fragile weak bone that is liable to fracture, gonial angle index (GAI) is one of the radio-morphometric indices, it has been controversial whether it is related to bone mineral density or ageing or none of them. The aim of study is to evaluate the role of cone beam computed tomography (CBCT) as a screening tool for diagnosis of osteoporosis and age effect in females using gonial angle index. Material and method: 60 females were divided into 3 groups according to age and (BMD) status into: Group1 (non-osteoporosis 20-30 years), Group2 (non-osteoporosis 50years and above),

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Digital Signal Processing
Reverberant signal separation using optimized complex sparse nonnegative tensor deconvolution on spectral covariance matrix
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Partial Least Square Regression(PLSR) and Tree Regression by Using Simulation(RT).
...Show More Authors

This research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square

... Show More
View Publication Preview PDF
Crossref