Preferred Language
Articles
/
TxdGro0BVTCNdQwCgRhw
Real time handwriting recognition system using CNN algorithms
...Show More Authors

Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.

Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Gender Recognition Using a Multilayer Feature Extraction Method
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Speech Emotion Recognition Using MELBP Variants of Spectrogram Image
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
A multivariate Bayesian model using Gibbs sampler with real data application
...Show More Authors

In many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jul 12 2023
Journal Name
Energies
Finite Time Disturbance Observer Based on Air Conditioning System Control Scheme
...Show More Authors

A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2006
Journal Name
Journal Of Engineering
SELF ORGANIZING FUZZY CONTROLLER FOR A NON-LINEAR TIME VARYING SYSTEM
...Show More Authors

This paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.

Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
...Show More Authors

Abstract 

     The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (56)
Crossref (40)
Scopus Crossref
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Fri Apr 02 2021
Journal Name
New Trends In Information And Communications Technology Applications: 4th International Conference, Ntict 2020, Baghdad, Iraq, June 15, 2020, Proceedings 4
Iris recognition using localized Zernike features with partial iris pattern
...Show More Authors

Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF