Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourteen parameters pH, DO, BOD, PO4, NO3,Ca, Mg, TH, K, Na, SO4,Cl, EC, Alk. The results indicated that the best correlation coefficient is 86.5% for BOD, and the most important parameter is Chloride Cl, and the best correlation coefficient is 95.4% for TDS and the most important parameters are total hardness TH and electrical conductivity EC, according to direct relation between these parameters and TDS.
The current research aims to identify the effectiveness of a computerized program in developing mathematical skills among the first cycle students in basic education schools in the Sultanate of Oman. The two researchers used the quasi-experimental approach on an intentional sample consisting of (40) male and female students at Al Kawakeb School for Basic Education (1-4). Two of the basic fourth-grade classes and then randomly distributing them into two groups, one is experimental (20) male and female students who followed the computerized interactive program, and the other is (20) male and female students followed the traditional way. On the other hand, its reliability has reached (0.81), and the results of the research have concluded th
... Show MoreSeasonal variations of the species composition and abundance of Cladocera were studied in two stations at the end of the Tigris River and one station at the confluence of the Tigris with Euphrates area, at the beginning of the Shatt Al-Arab River in Al-Qurnah North of Basrah Province, from October 2015 to August 2016. Samples of zooplankton were collected by plankton net 100-µm. mesh size. The population density of Cladocera ranged between 1 Ind /m³ during summer and 211 Ind./m³ during winter at station 1 (Al-Jewaber Bridge). A total of 16 species of Cladocera belonging to 12 genera were recorded in the study. The average density of Cladocera ranged from 23.2 ind./m3 at Station 2 (Hamayon Bridge) to 53.7 Ind./m3
... Show MoreThe Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec
High tunnels, or unheated plastic greenhouses, are becoming increasingly popular among organic vegetable growers across the United States. However, the intensive production typical of these systems presents soil health challenges, including salinization due to high fertilizer or compost inputs coupled with lack of rainfall to leach salts. Legume cover crops may improve soil health in high tunnels by reducing the need for external inputs, while adding organic matter. We tested the soil health effects of a winter hairy vetch (Vicia villosa Roth) cover crop used to replace fertilizer N in an organic tomato cropping system in high tunnels. Studies were replicated across three sites differing in climate and soil type (Kansas, Kentucky, and Minne
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More